The bee genus Epeolus Latreille (Hymenoptera: Apidae) consists of 109 species, which are known to be exclusively cleptoparasites of polyester (or cellophane) bees of the genus Colletes Latreille (Hymenoptera: Colletidae). Both genera have a nearly cosmopolitan distribution and are represented on all continents except Antarctica and Australia. We present the most comprehensive phylogeny for Epeolus to date, based on combined molecular and morphological data. In total, 59 ingroup taxa (species of Epeolus) and 7 outgroup taxa (other Epeolini) were scored for 99 morphological characters, and sequence data were obtained for seven genes (one mitochondrial and six nuclear, 5399 bp in total). Epeolus was found to be monophyletic, with a crown age estimated to be 25.0-13.4 Ma (95% HPD) and its origins traced to the Nearctic region. Epeolus was found to contain six major clades, five of which were well supported. The evolutionary history of Epeolus is explored in the context of earth history events and the evolutionary history of its host genus Colletes, for which a molecular phylogeny was constructed based on the same seven genes. A comparison of Epeolus and Colletes phylogenies limited to taxa for which there is evidence of an association suggests there was some cospeciation. However, more cladogenetic events in Epeolus were linked to instances of dispersal/vicariance. It is not yet clear the extent to which allopatric speciation contributed to diversification in Colletes, but the genus' success in having colonized and diversified across much of the globe made it possible for Epeolus to do the same.
- MeSH
- Phylogeny * MeSH
- Phylogeography * MeSH
- Hymenoptera parasitology MeSH
- Host-Parasite Interactions * MeSH
- Bees classification MeSH
- Genetic Speciation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Antarctic Regions MeSH
- Australia MeSH
Specialization makes resource use more efficient and should therefore be a common process in animal evolution. However, this process is not as universal in nature as one might expect. Our study shows that Sphecodes (Halictidae) cuckoo bees frequently change their host over the course of their evolution. To test the evolutionary scenario of host specialization in cuckoo bees, we constructed well-supported phylogenetic trees based on partial sequences of five genes for subtribe Sphecodina (Halictini). We detected up to 17 host switches during Sphecodes evolution based on 37 ingroup species subject to mapping analysis of the hosts associated with the cuckoo bee species. We also examine the direction of evolution of host specialization in Sphecodes using the likelihood ratio test and obtain results to support the bidirectional evolutionary scenario in which specialists can arise from generalists, and vice versa. We explain the existence of generalist species in Sphecodes based on their specialization at the individual level, which is recently known in two species. Our findings suggest flexible host choice and frequent host switches in the evolution of Sphecodes cuckoo bees. This scenario leads us to propose an individual choice constancy hypothesis based on the individual specialization strategy in cuckoo bees. Choice constancy has a close relationship to flower constancy in bees and might be an extension of the latter. Our analysis also shows relationships among the genera Microsphecodes, Eupetersia, Sphecodes and Austrosphecodes, a formerly proposed Sphecodes subgenus. Austrosphecodes species form a basal lineage of the subtribe, and Microsphecodes makes it paraphyletic.
- MeSH
- Bayes Theorem MeSH
- Adaptation, Biological physiology MeSH
- Biological Evolution * MeSH
- Behavior, Animal physiology MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Host-Parasite Interactions physiology MeSH
- Models, Genetic MeSH
- Molecular Sequence Data MeSH
- Likelihood Functions MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Bees classification genetics physiology MeSH
- Computational Biology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH