Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality.
- MeSH
- Actinobacteria fyziologie MeSH
- Burkholderiaceae fyziologie MeSH
- časové faktory MeSH
- Comamonadaceae fyziologie MeSH
- Eukaryota růst a vývoj metabolismus fyziologie MeSH
- fyziologie bakterií MeSH
- geny rRNA genetika MeSH
- heterotrofní procesy MeSH
- potravní řetězec MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
- MeSH
- bakteriální RNA genetika MeSH
- biodiverzita * MeSH
- Comamonadaceae fyziologie MeSH
- fyziologická adaptace fyziologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiologie vody * MeSH
- RNA ribozomální 16S genetika MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We examined the effect of light on the heterotrophic activity of the filamentous cyanobacterium Planktothrix rubescens and on its relationship with the accompanying bacteria. In situ leucine uptake by bacteria and cyanobacteria was determined in a subalpine mesotrophic lake, and natural assemblages from the zone of maximal P. rubescens abundances were incubated for 2 days at contrasting light regimes (ambient, 100× increased, dark). Planktothrix rubescens from the photic zone of the lake incorporated substantially more leucine, but some heterotrophic activity was maintained in filaments from the hypolimnion. Exposure of cyanobacteria to increased irradiance or darkness resulted in significantly lower leucine incorporation than at ambient light conditions. Highest abundances and leucine uptake of Betaproteobacteria from the genus Limnohabitans were found in the accompanying microflora at suboptimal irradiance levels for P. rubescens or in dark incubations. Therefore, two Limnohabitans strains (representing different species) were co-cultured with axenic P. rubescens at different light conditions. The abundances and leucine incorporation rates of both strains most strongly increased at elevated irradiance levels, in parallel to a decrease of photosynthetic pigment fluorescence and the fragmentation of cyanobacterial filaments. Our results suggest that Limnohabitans spp. in lakes might profit from the presence of physiologically stressed P. rubescens.
- MeSH
- Comamonadaceae metabolismus fyziologie MeSH
- fotosyntéza fyziologie MeSH
- heterotrofní procesy MeSH
- jezera mikrobiologie MeSH
- leucin metabolismus MeSH
- mikrobiologie vody MeSH
- sinice metabolismus fyziologie MeSH
- světlo MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH