"17-29239A" Dotaz Zobrazit nápovědu
Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6')-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3')-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
- Publikační typ
- časopisecké články MeSH
Background: The spread of carbapenemase genes, such as blaNDM-1, in Proteus mirabilis poses a public health threat. The aim of the study was to characterize the genome and plasmids sequences of an NDM-1-positive strain (IBCRE14), which was isolated in 2019 from a catheterized patient hospitalized in Italy. Methods: Whole genome sequencing (WGS) of IBCRE14 was performed on extracted genomic DNA using Sequel I platform. Genome assembly was performed using "Microbial Assembly". Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases from the Center for Genomic Epidemiology. Results: IBCRE14 had a genome size of 4,018,329 bp and harboured genes coding for resistance to aminoglycosides (aadA1), phenicol (cat), tetracycline (tetJ), and trimethoprim (dfrA1). A large plasmid (pIB_NDM_1) harboured antibiotic resistance genes against sulphonamide (sul1), trimethoprim (dfrA14), tetracycline (tetB), rifampicin (arr-2), aminoglycosides (aadA1, aph3-VI), and beta-lactams (blaOXA-10, blaNDM-1). Furthermore, a small plasmid (pIB_COL3M) harboured a qnrD1 gene coding for quinolone resistance. Conclusion: The ability to conjugate and the presence of a composite antibiotic resistance island suggests that pIB_NDM_1 could both acquire more resistance genes and easily disseminate. To our knowledge, this is the first report on an untypable plasmid harbouring blaNDM-1 in P. mirabilis, in Italy.
- Publikační typ
- časopisecké články MeSH