"CZ-DRO FNBr 65269705"
Dotaz
Zobrazit nápovědu
BACKGROUND: Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS: In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS: Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
- MeSH
- biologické markery MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- nádorové biomarkery genetika MeSH
- nádory prsu * diagnóza genetika patologie MeSH
- prognóza MeSH
- prospektivní studie MeSH
- regulace genové exprese u nádorů genetika MeSH
- RNA malá jaderná MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Pediatric oncology is a critical area where the more efficient development of new treatments is urgently needed. The speed of approval of new drugs is still limited by regulatory requirements and a lack of innovative designs appropriate for trials in children. Childhood cancers meet the criteria of rare diseases. Personalized medicine brings it even closer to the horizon of individual cases. Thus, not all the traditional research tools, such as large-scale RCTs, are always suitable or even applicable, mainly due to limited sample sizes. Small samples and traditional versus subject-specific evidence are both distinctive issues in personalized pediatric oncology. Modern analytical approaches and adaptations of the paradigms of evidence are warranted. We have reviewed innovative trial designs and analytical methods developed for small populations, together with individualized approaches, given their applicability to pediatric oncology. We discuss traditional population-based and individualized perspectives of inferences and evidence, and explain the possibilities of using various methods in pediatric personalized oncology. We find that specific derivatives of the original N-of-1 trial design adapted for pediatric personalized oncology may represent an optimal analytical tool for this area of medicine. We conclude that no particular N-of-1 strategy can provide a solution. Rather, a whole range of approaches is needed to satisfy the new inferential and analytical paradigms of modern medicine. We reveal a new view of cancer as continuum model and discuss the "evidence puzzle".
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH