"CZ.02.1.01/0.0/16_019/0000868" Dotaz Zobrazit nápovědu
TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.
- MeSH
- antigeny nádorové * metabolismus MeSH
- epitelové buňky metabolismus MeSH
- molekuly buněčné adheze * metabolismus MeSH
- plíce metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. METHODS: We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. RESULTS: HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. CONCLUSIONS: These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC.
- MeSH
- inhibitory histondeacetylas MeSH
- karcinogeneze MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny metabolismus MeSH
- nádorový supresorový protein p53 * genetika MeSH
- rodina MeSH
- spinocelulární karcinom * farmakoterapie genetika metabolismus MeSH
- transkripční faktory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH