"Cooperatio MED/DIAG"
Dotaz
Zobrazit nápovědu
Degenerative effects of nerve tissues are often accompanied by changes in vascularization. In this regard, knowledge about hereditary cerebellar degeneration is limited. In this study, we compared the vascularity of the individual cerebellar components of 3-month-old wild-type mice (n = 8) and Purkinje cell degeneration (pcd) mutant mice, which represent a model of hereditary cerebellar degeneration (n = 8). Systematic random samples of tissue sections were processed, and laminin was immunostained to visualize microvessels. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in cerebellar layers. Our results in pcd mice revealed a 45% (p < 0.01) reduction in the total volume of the cerebellum, a 28% (p < 0.05) reduction in the total number of vessels and a lower total length, approaching 50% (p < 0.001), compared to the control mice. In pcd mutants, cerebellar degeneration is accompanied by significant reduction in the microvascular network that is proportional to the cerebellar volume reduction therefore does not change density of in the cerebellar gray matter of pcd mice.
- MeSH
- mikrocévy MeSH
- mozeček * MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Purkyňovy buňky * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The spleen is a large and highly vascularized secondary lymphatic organ. Spleen injuries are among the most frequent trauma-related injuries in the abdominal region. The aims of the study were to assess the volume fractions of the main splenic tissue components (red pulp, white pulp, trabeculae and reticular fibres) and to determine the severity of splenic injury due to the experimental impact test. Porcine spleens (n = 17) were compressed by 6.22 kg wooden plate using a drop tower technique from three impact heights (50, 100 and 150 mm corresponding to velocities 0.79, 1.24 and 1.58 m/s). The pressure was measured via catheters placed in the splenic vein. The impact velocity was measured using lasers. The severity of induced injuries was analysed on the macroscopic level. The volume fractions of splenic components were assessed microscopically using stereology. The volume fraction of the red pulp was 76.4%, white pulp 21.3% and trabeculae 2.7% respectively. All impact tests, even with the low impact velocities, led to injuries that occurred mostly in the dorsal extremity of the spleen, and were accompanied by bleeding, capsule rupture and parenchyma crushing. Higher impact height (impact velocity and impact energy) caused more severe injury. Porcine spleen had the same volume fraction of tissue components as human spleen, therefore we concluded that the porcine spleen was a suitable organ model for mechanical experiments. Based on our observations, regions around hilum and the diaphragmatic surface of the dorsal extremity, that contained fissures and notches, were the most prone to injury and required considerable attention during splenic examination after injury. The primary mechanical data are now available for the researchers focused on the splenic trauma modelling.
- MeSH
- lidé MeSH
- nemoci prasat * MeSH
- prasata MeSH
- slezina MeSH
- tupá poranění * veterinární MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH