"ENOCH No. CZ.02.1.01/0.0/0.0/16_019/0000868"
Dotaz
Zobrazit nápovědu
We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 μM for BTK) and 5b (IC50 = 0.38 μM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.
- Publikační typ
- časopisecké články MeSH
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
- MeSH
- adenosin biosyntéza genetika imunologie terapeutické užití MeSH
- cílená molekulární terapie * MeSH
- imunoterapie trendy MeSH
- karcinogeneze účinky léků imunologie MeSH
- lidé MeSH
- nádorové mikroprostředí účinky léků imunologie MeSH
- nádory genetika imunologie terapie MeSH
- purinergní receptory P1 imunologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Toll-like receptor 3 (TLR3) is a member of the TLR family, which has been extensively studied for its antiviral function. It is highly expressed in the endosomes of antigen-presenting immune cells and epithelial cells. TLR3 binds specifically double-strand RNAs (dsRNAs), leading to the activation of mainly two downstream pathways: the phosphorylation of IRF3, with subsequent production of type I interferon, and the activation of NF-κB, which drives the production of inflammatory cytokines and chemokines. Several studies have demonstrated TLR3 expression in multiple neoplasia types including breast, prostate, and lung cancer. Most studies were focused on the beneficial role of TLR3 activation in tumor cells, which leads to the production of cytotoxic cytokines and interferons and promotes caspase-dependent apoptosis. Indeed, ligands of this receptor were proposed for the treatment of cancer, also in combination with conventional chemotherapy. In contrast to these findings, recent evidence showed a link between TLR3 and tumor progression, metastasis, and therapy resistance. In the present review, we summarize the current knowledge of the mechanisms through which TLR3 can either lead to tumor regression or promote carcinogenesis as well as the potential of TLR-based therapies in resistant cancer.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH