OBJECTIVE: Idiopathic inflammatory myopathies (IIMs, myositis) are rare systemic autoimmune disorders that lead to muscle inflammation, weakness, and extramuscular manifestations, with a strong genetic component influencing disease development and progression. Previous genome-wide association studies identified loci associated with IIMs. In this study, we imputed data from two prior genome-wide myositis studies and analyzed the largest myositis data set to date to identify novel risk loci and susceptibility genes associated with IIMs and its clinical subtypes. METHODS: We performed association analyses on 14,903 individuals (3,206 patients and 11,697 controls) with genotypes and imputed data from the Trans-Omics for Precision Medicine reference panel. Fine-mapping and expression quantitative trait locus colocalization analyses in myositis-relevant tissues indicated potential causal variants. Functional annotation and network analyses using the random walk with restart (RWR) algorithm explored underlying genetic networks and drug repurposing opportunities. RESULTS: Our analyses identified novel risk loci and susceptibility genes, such as FCRLA, NFKB1, IRF4, DCAKD, and ATXN2 in overall IIMs; NEMP2 in polymyositis; ACBC11 in dermatomyositis; and PSD3 in myositis with anti-histidyl-transfer RNA synthetase autoantibodies (anti-Jo-1). We also characterized effects of HLA region variants and the role of C4. Colocalization analyses suggested putative causal variants in DCAKD in skin and muscle, HCP5 in lung, and IRF4 in Epstein-Barr virus (EBV)-transformed lymphocytes, lung, and whole blood. RWR further prioritized additional candidate genes, including APP, CD74, CIITA, NR1H4, and TXNIP, for future investigation. CONCLUSION: Our study uncovers novel genetic regions contributing to IIMs, advancing our understanding of myositis pathogenesis and offering new insights for future research.
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons-where an intermediate step is a nonsense substitution-show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
- MeSH
- Bacteria classification genetics MeSH
- Bacterial Proteins classification genetics MeSH
- Point Mutation MeSH
- Phylogeny MeSH
- Models, Genetic MeSH
- Evolution, Molecular MeSH
- Codon, Nonsense * MeSH
- Open Reading Frames genetics MeSH
- Prokaryotic Cells metabolism MeSH
- Pseudogenes genetics MeSH
- Base Sequence MeSH
- Sequence Homology, Nucleic Acid MeSH
- Selection, Genetic MeSH
- Codon, Terminator genetics MeSH
- Publication type
- Journal Article MeSH
Annual report [Division of Cancer Biology, Diagnosis, and Centers] ; Vol. 1
708 s.
- Keywords
- rakovina-diagnostika, rakovina-imunologie, rakovina-prevence,
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- onkologie
- management, organizace a řízení zdravotnictví
BACKGROUND: Lithium is a first-line treatment in bipolar disorder, but individual response is variable. Previous studies have suggested that lithium response is a heritable trait. However, no genetic markers of treatment response have been reproducibly identified. METHODS: Here, we report the results of a genome-wide association study of lithium response in 2563 patients collected by 22 participating sites from the International Consortium on Lithium Genetics (ConLiGen). Data from common single nucleotide polymorphisms (SNPs) were tested for association with categorical and continuous ratings of lithium response. Lithium response was measured using a well established scale (Alda scale). Genotyped SNPs were used to generate data at more than 6 million sites, using standard genomic imputation methods. Traits were regressed against genotype dosage. Results were combined across two batches by meta-analysis. FINDINGS: A single locus of four linked SNPs on chromosome 21 met genome-wide significance criteria for association with lithium response (rs79663003, p=1·37 × 10(-8); rs78015114, p=1·31 × 10(-8); rs74795342, p=3·31 × 10(-9); and rs75222709, p=3·50 × 10(-9)). In an independent, prospective study of 73 patients treated with lithium monotherapy for a period of up to 2 years, carriers of the response-associated alleles had a significantly lower rate of relapse than carriers of the alternate alleles (p=0·03268, hazard ratio 3·8, 95% CI 1·1-13·0). INTERPRETATION: The response-associated region contains two genes for long, non-coding RNAs (lncRNAs), AL157359.3 and AL157359.4. LncRNAs are increasingly appreciated as important regulators of gene expression, particularly in the CNS. Confirmed biomarkers of lithium response would constitute an important step forward in the clinical management of bipolar disorder. Further studies are needed to establish the biological context and potential clinical utility of these findings. FUNDING: Deutsche Forschungsgemeinschaft, National Institute of Mental Health Intramural Research Program.
- MeSH
- Bipolar Disorder drug therapy genetics MeSH
- Genome-Wide Association Study MeSH
- Phenotype MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Prospective Studies MeSH
- Glial Cell Line-Derived Neurotrophic Factor Receptors genetics MeSH
- Lithium Compounds therapeutic use MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH