"MR/P009018/1"
Dotaz
Zobrazit nápovědu
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
- MeSH
- akvaglyceroporiny chemie metabolismus MeSH
- léková rezistence * MeSH
- sekvence aminokyselin MeSH
- stabilita proteinů MeSH
- trypanocidální látky farmakologie MeSH
- Trypanosoma brucei brucei * MeSH
- trypanozomóza africká parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
- MeSH
- adenosintrifosfát metabolismus MeSH
- energetický metabolismus účinky léků MeSH
- flagella účinky léků metabolismus ultrastruktura MeSH
- glykolýza účinky léků MeSH
- kyselina pyrohroznová metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolom účinky léků MeSH
- mikrotělíska účinky léků metabolismus ultrastruktura MeSH
- mitochondrie účinky léků metabolismus ultrastruktura MeSH
- molekulární modely MeSH
- prolin metabolismus MeSH
- proteom metabolismus MeSH
- protonové ATPasy metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- suramin farmakologie MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reliable determination of protein complex composition or changes to protein levels in whole cells is challenging. Despite the multitude of methods now available for labeling, analysis, and the statistical processing of data, this large variety is of itself an issue: Which approach is most appropriate, where do you set cutoffs, and what is the most cost-effective strategy? One size does not fit all for such work, but some guidelines can help in terms of reducing cost, improving data quality, and ultimately advancing investigations. Here we describe two protocols and algorithms for facile sample preparation for mass spectrometric analysis, robust data processing, and considerations of how to interpret large proteomic datasets in a productive and robust manner.
- MeSH
- datové soubory jako téma MeSH
- elektroforéza v polyakrylamidovém gelu metody MeSH
- hmotnostní spektrometrie metody MeSH
- multiproteinové komplexy izolace a purifikace metabolismus MeSH
- proteomika metody MeSH
- protozoální proteiny izolace a purifikace metabolismus MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The name "eukaryote" is derived from Greek, meaning "true kernel", and describes the domain of organisms whose cells have a nucleus. The nucleus is thus the defining feature of eukaryotes and distinguishes them from prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we discuss the intriguing possibility that organisms on the path from the first eukaryotic common ancestor to the last common ancestor of all eukaryotes did not possess a nucleus at all-at least not in a form we would recognize today-and that the nucleus in fact arrived relatively late in the evolution of eukaryotes. The clues to this alternative evolutionary path lie, most of all, in recent discoveries concerning the structure of the nuclear pore complex. We discuss the evidence for such a possibility and how this impacts our views of eukaryote origins and how eukaryotes have diversified subsequent to their last common ancestor.