Apicoplast Dotaz Zobrazit nápovědu
The apicomplexans are a group of obligate animal pathogens that include Plasmodium (malaria), Toxoplasma (toxoplasmosis), and Cryptosporidium (cryptosporidiosis) [1]. They are an extremely diverse and specious group but are nevertheless united by a distinctive suite of cytoskeletal and secretory structures related to infection, called the apical complex, which is used to recognize and gain entry into animal host cells. The apicomplexans are also known to have evolved from free-living photosynthetic ancestors and retain a relict plastid (the apicoplast), which is non-photosynthetic but houses a number of other essential metabolic pathways [2]. Their closest relatives include a mix of both photosynthetic algae (chromerids) and non-photosynthetic microbial predators (colpodellids) [3]. Genomic analyses of these free-living relatives have revealed a great deal about how the alga-parasite transition may have taken place, as well as origins of parasitism more generally [4]. Here, we show that, despite the surprisingly complex origin of apicomplexans from algae, this transition actually occurred at least three times independently. Using single-cell genomics and transcriptomics from diverse uncultivated parasites, we find that two genera previously classified within the Apicomplexa, Piridium and Platyproteum, form separately branching lineages in phylogenomic analyses. Both retain cryptic plastids with genomic and metabolic features convergent with apicomplexans. These findings suggest a predilection in this lineage for both the convergent loss of photosynthesis and transition to parasitism, resulting in multiple lineages of superficially similar animal parasites.
- MeSH
- Apicomplexa klasifikace MeSH
- apikoplasty klasifikace MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- paraziti klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Toxoplasma gondii, an etiologic agent of toxoplasmosis, is an obligate intracellular parasite, which exhibits an apicoplast organelle which assists in the metabolism of isoprenoids and other pivotal mediators for the parasite survival. Statins are drugs that inhibit cholesterol synthesis, blocking the conversion of the substrate HMG-CoA to mevalonate, thus preventing the initial processes of the biosynthesis of these precursors, both in humans and parasite. In the light of this information, we determined the effect of pravastatin and simvastatin associated with the current drugs (pyrimethamine and sulfadiazine) as a possible alternative treatment for this infection. Cytotoxicity was evaluated in HeLa cells by MTT assay, which was observed the drug combinations did not affect cell viability. HeLa cells (105) were infected with T. gondii tachyzoites of RH strain (5 × 105) and treated with pravastatin and/or simvastatin combined with pyrimethamine and/or sulfadiazine for 24 h. Our data showed a significant reduction in cell adhesion, infection and mainly parasite proliferation in all treatments. Based on these results, the combination of statins with drugs used in current therapy showed to be a promising therapeutic alternative for toxoplasmosis treatment.
- MeSH
- antiprotozoální látky aplikace a dávkování farmakologie MeSH
- apikoplasty účinky léků MeSH
- HeLa buňky MeSH
- kombinovaná farmakoterapie metody MeSH
- proliferace buněk účinky léků MeSH
- pyrimethamin aplikace a dávkování MeSH
- statiny aplikace a dávkování farmakologie MeSH
- sulfadiazin aplikace a dávkování MeSH
- synergismus léků MeSH
- techniky in vitro MeSH
- Toxoplasma * růst a vývoj účinky léků MeSH
- toxoplazmóza farmakoterapie MeSH
- Publikační typ
- práce podpořená grantem MeSH
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron-sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
- MeSH
- Apicomplexa genetika metabolismus MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Chromerida are algae possessing a complex plastid surrounded by four membranes. Although isolated originally from stony corals in Australia, they seem to be globally distributed. According to their molecular phylogeny, morphology, ultrastructure, structure of organellar genomes, and noncanonical pathway for tetrapyrrole synthesis, these algae are thought to be the closest known phototrophic relatives to apicomplexan parasites. Here, we summarize the current knowledge of cell biology and evolution of this novel group of algae, which contains only two formally described species, but is apparently highly diverse and virtually ubiquitous in marine environments.
- MeSH
- Apicomplexa cytologie metabolismus MeSH
- apikoplasty parazitologie MeSH
- biologie buňky MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.
- MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- metabolické sítě a dráhy MeSH
- plastidy * genetika MeSH
- proteom * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Detection and quantification of coccidia in studies of wildlife can be challenging. Therefore, prevalence of coccidia is often not assessed at the parasite species level in non-livestock animals. Parasite species - specific prevalences are especially important when studying evolutionary questions in wild populations. We tested whether increased host population density increases prevalence of individual Eimeria species at the farm level, as predicted by epidemiological theory. We studied free-living commensal populations of the house mouse (Mus musculus) in Germany, and established a strategy to detect and quantify Eimeria infections. We show that a novel diagnostic primer targeting the apicoplast genome (Ap5) and coprological assessment after flotation provide complementary detection results increasing sensitivity. Genotyping PCRs confirm detection in a subset of samples and cross-validation of different PCR markers does not indicate bias towards a particular parasite species in genotyping. We were able to detect double infections and to determine the preferred niche of each parasite species along the distal-proximal axis of the intestine. Parasite genotyping from tissue samples provides additional indication for the absence of species bias in genotyping amplifications. Three Eimeria species were found infecting house mice at different prevalences: Eimeria ferrisi (16.7%; 95% CI 13.2-20.7), E. falciformis (4.2%; 95% CI 2.6-6.8) and E. vermiformis (1.9%; 95% CI 0.9-3.8). We also find that mice in dense populations are more likely to be infected with E. falciformis and E. ferrisi. We provide methods for the assessment of prevalences of coccidia at the species level in rodent systems. We show and discuss how such data can help to test hypotheses in ecology, evolution and epidemiology on a species level.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Gregarines represent an important transition step from free-living predatory (colpodellids s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most important pathogens, obligate intracellular parasites of humans and domestic animals such as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.). While dozens of genomes of other apicomplexan groups are available, gregarines are barely entering the molecular age. Among the gregarines, archigregarines possess a unique mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular microtubules) features. METHODOLOGY/PRINCIPAL FINDINGS: In this study we revisited five of the early-described species of the genus Selenidium including the type species Selenidium pendula, with special focus on surface ultrastructure and molecular data. We were also able to describe three new species within this genus. All species were characterized at morphological (light and scanning electron microscopy data) and molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from polychaete hosts collected from the English Channel near the Station Biologique de Roscoff, France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S. opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data showed archigregarines clustering into five separate clades and support previous doubts about their monophyly. CONCLUSIONS/SIGNIFICANCE: Our phylogenies using the extended gregarine sampling show that the archigregarines are indeed not monophyletic with one strongly supported clade of Selenidium sequences around the type species S. pendula. We suggest the revision of the whole archigregarine taxonomy with only the species within this clade remaining in the genus Selenidium, while the other species should be moved into newly erected genera. However, the SSU rDNA phylogenies show very clearly that the tree topology and therefore the inferred relationships within and in between clades are unstable and such revision would be problematic without additional sequence data.
- MeSH
- Apicomplexa klasifikace genetika MeSH
- fylogeneze * MeSH
- protozoální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- antigeny protozoální chemie genetika metabolismus MeSH
- Apicomplexa imunologie fyziologie MeSH
- apikoplasty imunologie fyziologie MeSH
- biologická adaptace MeSH
- biologická evoluce MeSH
- druhová specificita MeSH
- extracelulární prostor imunologie metabolismus parazitologie MeSH
- interakce hostitele a parazita * MeSH
- lidé MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- protozoální infekce zvířat imunologie metabolismus parazitologie MeSH
- protozoální infekce imunologie metabolismus parazitologie MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH