Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age. Here, we explored this model to test how POF relates to oocyte euploidy. The mutant rat females displayed increased oocyte aneuploidy and embryonic death of their offspring compared to controls. Because rat PRDM9 positions meiotic DNA breaks, we investigated the repair of these breaks. Fertile control rodents carry pachytene oocytes with synapsed homologous chromosomes and repaired breaks, while sterile Prdm9-deficient mice carry pachytene-like oocytes with many persisting breaks and asynapsed chromosomes. However, most PRDM9-lacking rat oocytes displayed a few persisting breaks and non-homologous synapsis (NHS). HORMAD2 protein serves as a barrier to sister-chromatid repair and a signal for the synapsis and DNA repair checkpoints. NHS but not asynapsis was associated with HORMAD2 levels similar to the levels on rat pachytene chromosomes with homologous synapsis. NHS was accompanied by crossing-over decreased below the minimum that is essential for euploidy. We argue that the increased mutant rat aneuploidy is due to NHS, which allows some oocytes to pass meiotic checkpoints without one crossing-over per chromosomal pair, leading to segregation errors, and thereby NHS links POF to aneuploidy.
- MeSH
- Aneuploidy * MeSH
- Chromosomes MeSH
- Histone-Lysine N-Methyltransferase * genetics metabolism MeSH
- Rats MeSH
- Meiosis * genetics MeSH
- Oocytes metabolism MeSH
- Chromosome Pairing * genetics MeSH
- Rats, Inbred SHR MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Male infertility is a serious problem in an increasing number of couples. We report an infertile man with non-obstructive azoospermia and karyotype 45,XY,rob(14;22). The immunofluorescence analysis of his testicular tissue using antibodies to SYCP1, SYCP3, HORMAD2, MLH1, and centromeres showed delayed synapsis of the chromosomes involved in the translocation, a varying extent of trivalent asynapsis and its association with sex chromosomes. The mean frequency of meiotic recombination per cell was within the range of normal values. Fluorescence in situ hybridization (FISH) with probes for chromosomes 14 and 22 revealed 5.83% of chromosomally abnormal testicular spermatozoa. FISH with probes for chromosomes X, Y, and 21 showed frequencies of disomic and diploid testicular spermatozoa increased when compared to ejaculated sperm of healthy donors, but comparable with published results for azoospermic patients. PGD by FISH for the translocation and aneuploidy of chromosomes X, Y, 13, 18, and 21 showed a normal chromosomal complement in one out of three analyzed embryos. A healthy carrier girl was born after the embryo transfer. This study shows the benefits of preimplantation genetic diagnosis in a case of a rare Robertsonian translocation carrier with azoospermia and a relatively low frequency of chromosomally unbalanced testicular spermatozoa.
- MeSH
- Aneuploidy * MeSH
- Azoospermia genetics MeSH
- Genetic Carrier Screening * MeSH
- Karyotyping MeSH
- Humans MeSH
- Chromosomes, Human, Pair 14 * MeSH
- Chromosomes, Human, Pair 22 * MeSH
- Meiosis genetics MeSH
- Spermatozoa metabolism MeSH
- Translocation, Genetic * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
Autosomal trisomies and monosomies bring serious threats to embryonic development through transcriptional disarray caused primarily by the dosage effect of the aneuploid part of the genome. The present study compared the effect of a mouse-viable 30-Mb segmental trisomy on the genome-wide transcriptional profile of somatic (liver) cells and male germ cells. Although the 1.6-fold change in expression of triplicated genes reflected the gene dosage in liver cells, the extra copy genes were compensated in early pachytene spermatocytes, showing 1.18-fold increase. Although more pronounced, the dosage compensation of trisomic genes was concordant with the incidence of HORMAD2 protein and histone gammaH2AX markers of unsynapsed chromatin. A possible explanation for this includes insufficient sensitivity to detect the meiotic silencing of unsynapsed chromatin markers in the 30-Mb region of the chromosome or an earlier silencing effect of another epigenetic factor. Taken together, our results indicate that the meiotic silencing of unsynapsed chromatin is the major, but most likely not the only, factor driving the dosage compensation of triplicated genes in primary spermatocytes.
- MeSH
- Aneuploidy MeSH
- Chromatin genetics MeSH
- Phenotype MeSH
- Genome * MeSH
- Liver physiology MeSH
- Dosage Compensation, Genetic * MeSH
- Meiosis genetics MeSH
- Infertility, Male genetics MeSH
- Mice, Inbred C57BL MeSH
- Spermatocytes physiology MeSH
- Synaptonemal Complex genetics MeSH
- Pregnancy MeSH
- Body Weight genetics MeSH
- Transcriptome MeSH
- Translocation, Genetic genetics MeSH
- Trisomy genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH