Nkrp1b Dotaz Zobrazit nápovědu
The cytotoxicity of mouse natural killer (NK) cells in response to pathological changes in target cells is regulated via the Nkrp1b receptor. Here, we characterized the Nkrp1b structure and structural features (stalk, loop, and oligomerization state) that affect its interactions. To study the Nkrp1b protein structure and the functional importance of its stalk, two Nkrp1b protein variants differing by the presence of the stalk were prepared. These variants were studied using a combination of structural mass spectrometry approaches with computational modeling to derive structural models. In addition, information about biological activity and localization in mammalian cells was acquired using scanning microscopy techniques and western blotting. Based on these methods, we obtained the structure of Nkrp1b ectodomain in its monomeric and dimeric conformations, identified the dimerization interface, and determined disulfide connections within the molecule. We found that Nkrp1b occurs as a mixture of monomers and homodimers, both in vitro and in vivo. SIGNIFICANCE: Despite the long-standing assumption that Nkrp1 proteins are homodimers connected by disulfide bonds in the stalk region, our data showed that both Nkrp1b protein variants form monomers and homodimers irrespective of the presence of the stalk. We demonstrated that the stalk is not crucial for protein dimerization or ligand binding and that Nkrp1b interacts with its natural ligands only in its monomeric conformation; therefore, dimers may have another regulatory function. Using a unique combination of computational, biochemical, and biological methods, we revealed the structural conformation and behavior of Nkrp1b in its native state. In addition, it is a first report utilizing the intermolecular chemical cross-linking of light- and heavy-labeled protein chains together with ion mobility-mass spectrometry to design the structural models of protein homodimers.
- MeSH
- lektinové receptory NK-buněk - podrodina B chemie metabolismus MeSH
- molekulární modely * MeSH
- multimerizace proteinu * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proteomika * MeSH
- sekundární struktura proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
As a part of the innate immunity, NK (Natural Killer) cells provide an early immune response to different stimuli, e.g. viral infections and tumor growths. However, their functions are more complex; they play an important role in reproduction, alloimmunity, autoimmunity and allergic diseases. NK cell activities require an intricate system of regulation that is ensured by many different receptors on a cell surface which integrate signals from interacting cells and soluble factors. One way to understand NK cell biology is through the structure of NK receptors, which can reveal ligand binding conditions. We present a modified protocol for recombinant expression in Escherichia coli and in vitro refolding of the ligand-binding domain of the inhibitory Nkrp1b (SJL/J) protein. Nkrp1b identity and folding was confirmed using mass spectrometry (accurate mass of the intact protein and evaluation of disulfide bonds) and one-dimensional nuclear magnetic resonance spectroscopy. The intention is to provide the basis for conducting structural studies of the inhibitory Nkrp1b protein, since only the activating Nkrp1a receptor structure is known.
- MeSH
- buněčná inkluze MeSH
- disulfidy chemie MeSH
- Escherichia coli metabolismus MeSH
- hmotnostní spektrometrie MeSH
- lektinové receptory NK-buněk - podrodina B biosyntéza chemie genetika MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- refolding proteinů MeSH
- rekombinantní proteiny biosyntéza MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH