Oscheius
Dotaz
Zobrazit nápovědu
We determined the complete mitochondrial genome of the facultative entomopathogenic nematode Oscheius chongmingensis. The mitogenome length was 15,413 bp and similar to other Rhabditids contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins (ATPase subunit 8 is missing). Predicted tRNAs indicated the secondary structure typical for chromadorean nematodes. Gene order is similar to that observed in the genus Caenorhabditis. The control AT-rich region is considerably large (2061 bp, 84% of AT), positioned in between tRNA(Ala) and tRNA(Pro) and has several microsatellite-like (AT)n elements.
- MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- mitochondriální geny MeSH
- oblasti bohaté na AT MeSH
- otevřené čtecí rámce MeSH
- regulační oblasti nukleových kyselin MeSH
- Rhabditida klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Entomopathogenic nematodes (EPN) are excellent biological control agents to fight soil-dwelling insect pests. In a previous survey of agricultural soils of Switzerland, we found mixtures of free-living nematodes (FLN) in the genus Oscheius, which appeared to be in intense competition with EPN. As this may have important implications for the long-term persistence of EPN, we studied this intraguild competition in detail. We hypothesized that (i) Oscheius spp. isolates act as scavengers rather than entomopathogens, and (ii) cadavers with relatively small numbers of EPN are highly suitable resources for Oscheius spp. reproduction. To study this, we identified Oscheius spp. isolated from Swiss soils, quantified the outcome of EPN/Oscheius competition in laboratory experiments, developed species-specific primers and probe for quantitative real-time PCR, and evaluated their relative occurrence in the field in the context of the soil food web. Molecular analysis (ITS/D2D3) identified MG-67/MG-69 as Oscheius onirici and MG-68 as O. tipulae (Dolichura-group). Oscheius spp. indeed behaved as scavengers, reproducing in ∼64% of frozen-killed cadavers from controlled experiments. Mixed infection in the laboratory by Oscheius spp. with low (3 IJs) or high (20 IJs) initial EPN numbers revealed simultaneous reproduction in double-exposed cadavers which resulted in a substantial reduction in the number of EPN progeny from the cadaver. This effect depended on the number of EPN in the initial inoculum and differed by EPN species; Heterorhabditis megidis was better at overcoming competition. This study reveals Oscheius spp. as facultative kleptoparasites that compete with EPN for insect cadavers. Using real-time qPCR, we were able to accurately quantify this strong competition between FLN and EPN in cadavers that were recovered after soil baiting (∼86% cadavers with >50% FLN production). The severe competition within the host cadavers and the intense management of the soils in annual crops readily explain the low EPN numbers in Swiss field samples. The developed molecular tools can be used to elucidate the extent to which the competitive interactions affect EPN populations. This can help to develop strategies to achieve good persistence and natural EPN recycling, in particular in systems where native EPN levels are low, such as annual crops.
- MeSH
- biologická ochrana MeSH
- fylogeneze MeSH
- hlístice genetika fyziologie MeSH
- hustota populace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- populační dynamika MeSH
- půda * MeSH
- ribozomální DNA chemie MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
The synergistic anticandidal activity of three diketopiperazines [cyclo-(L-Pro-L-Leu) (1), cyclo-(D-Pro-L-Leu) (2), and cyclo-(D-Pro-L-Tyr) (3)] purified from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) in combination with amphotericin B and clotrimazole was investigated using the macrodilution method. The minimum inhibitory concentration and minimum fungicidal concentration of the diketopiperazines was compared with that of the standard antibiotics. The synergistic anticandidal activities of diketopiperazines with amphotericin B or clotrimazole were assessed using the checkerboard and time-kill methods. The results of the present study showed that the combined effects of diketopiperazines with amphotericin B or clotrimazole predominantly recorded synergistic (<0.5). Time-kill study showed that the growth of the Candida was completely attenuated after 12-24 h of treatment with 50:50 ratios of diketopiperazines and antibiotics. These results suggest that diketopiperazines combined with antibiotics may be microbiologically beneficial and not antagonistic. These findings have potential implications in delaying the development of resistance as the anticandidal effect is achieved with lower concentrations of both drugs (diketopiperazines and antibiotics). The cytotoxicity of diketopiperazines was also tested against two normal human cell lines (L231 lung epithelial and FS normal fibroblast) and no cytotoxicity was recorded for diketopiperazines up to 200 μg/mL. The in vitro synergistic activity of diketopiperazines with antibiotics against Candida albicans is reported here for the first time.
- MeSH
- amfotericin B farmakologie MeSH
- Bacillus chemie MeSH
- buněčné linie MeSH
- Candida albicans účinky léků MeSH
- diketopiperaziny izolace a purifikace farmakologie toxicita MeSH
- klotrimazol farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiální viabilita účinky léků MeSH
- synergismus léků * MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH