Q112413762
Dotaz
Zobrazit nápovědu
Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant.
The dynamics of a long-term cold acclimation (CA) was studied in spring barley cultivar Atlas 68, winter barley cultivar Igri and a set of doubled haploid (DH) lines derived from an Atlas 68xIgri cross. The aim was to evaluate the effect of plant development on the ability to induce frost tolerance (FT) and to accumulate dehydrin 5 (DHN5) during CA. The plant developmental stage was evaluated by phenological development of the shoot apex and by determination of days to heading after a certain period of CA. FT was determined by direct frost tests. Plant winter survival was also determined. DHN5 was evaluated by densitometric analysis of protein gel blots. Cold led to the induction of increased FT and to the accumulation of DHN5 in both spring and winter lines. However, with the progression of CA, differences between the growth habits occurred as the winter lines were able to maintain increased FT and DHN5 levels for a significantly longer period of time than the spring lines. After vegetative/reproductive transition, a significant decrease in DHN5 accumulation was found in all lines; however, a discrepancy between the acquired FT level and DHN5 accumulation in vernalized winter barley plants was found. A correlation between DHN5 accumulation and plant winter survival was found when the studied lines were differentiated according to their developmental stage and DHN5 level. Possible explanations for these phenomena are provided.
- MeSH
- aklimatizace genetika fyziologie MeSH
- chov MeSH
- haploidie MeSH
- ječmen (rod) genetika fyziologie MeSH
- listy rostlin metabolismus fyziologie MeSH
- nízká teplota MeSH
- rostlinné proteiny biosyntéza genetika metabolismus MeSH
- výhonky rostlin fyziologie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH