Q112553719
Dotaz
Zobrazit nápovědu
A new method has been described for efficient derivatization of secondary alicyclic hydroxyl groups in steroids by alkyl chloroformates (RCFs). Cholesterol, an essential human sterol and a steroid precursor in eukaryotic cells, was used as a model for treatment with various RCFs in an aqueous and non-aqueous environment. While the cholesterol hydroxyl group did not react completely with any of the tested RCFs reagents in the former case, trifluoroethyl chloroformate (TFECF) or heptafluorobutyl chloroformate (HFBCF) fully converts cholesterol and related metabolites into the corresponding mixed carbonates under anhydrous conditions in seconds. The acylation reaction was combined with liquid-liquid microextraction (LLME) between isooctane and acetonitrile phase. The sample preparation requires just a stepwise addition of 50μl isooctane with 5μl of a pyridine catalyst, 100μl acetonitrile and 100μl isooctane with dissolved 5μl of the fluoroalkyl chloroformate reagent to a dried sample. The protocol developed in this study was successfully tested for GC-MS analysis of 12 important model steroids and four main tocopherols. Each analyte provided a single peak with excellent GC separation properties, well defined EI spectra containing diagnostic fragment ions suitable for their identification and quantitation. The new method was further validated for the determination of six diagnostic non-cholesterol sterols and four main tocopherols in human serum and in amniotic fluid. Satisfactory data were obtained in terms of calibration, quantitation limits (for sterols and tocopherols, 0.05 and 0.15μg/ml, respectively), within-run precision (0.9-19.5%) and between-run precision (0.2-19.0%), accuracy (82-115%) and recovery (90-110%). The validated method was successfully applied to GC-MS analysis of the analytes in woman sera and amniotic fluids and the results are well-comparable with those reported by other authors. The presented work demonstrates for the first time capability of the RCFs to derivatize alicyclic hydroxyls in steroids and tocopherols metabolites for GC-MS with excellent reaction rates, highest reaction yields, minor reagent consumption and easy conjunction with LLME methods.
- MeSH
- fluorokarbony chemie MeSH
- formiáty chemie MeSH
- indikátory a reagencie MeSH
- lidé MeSH
- mikroextrakce kapalné fáze MeSH
- plodová voda chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- sérum MeSH
- steroly analýza krev MeSH
- těhotenství MeSH
- tokoferoly analýza krev MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of β-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (γ and δ) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes.
- MeSH
- buněčná membrána metabolismus MeSH
- fosfolipidy metabolismus MeSH
- Heteroptera metabolismus MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- roční období * MeSH
- steroly metabolismus MeSH
- tokoferoly metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH