Q36655807
Dotaz
Zobrazit nápovědu
BACKGROUND: Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. RESULTS: Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. CONCLUSIONS: Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná chemie genetika MeSH
- druhová specificita MeSH
- Eleocharis klasifikace genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- koncové repetice genetika MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- polyploidie MeSH
- retroelementy genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční homologie nukleových kyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
*Stabilizing selection is a key evolutionary mechanism for which there is relatively little experimental evidence. To date, stabilizing selection has never been observed at the whole-genome level. *We tested the effect of selection on genome size in a field experiment using seeds collected in a population of Festuca pallens with a highly variable genome size. Using flow cytometry, we measured the genome size in germinating seedlings and juvenile plants grown with or without high intraspecific competition (908 individuals). Above-ground biomass and leaf number were used as measurements of individual vegetative performance. The possible confounding effect of seed weight was controlled for in a separate experiment. *Growth under high competition had a significant stabilizing effect on genome size. Because no relationship was observed between genome size and vegetative performance, we assume that the elimination of plants with extreme genome sizes was the result of decreased survival as a consequence of some unrecognized stress. *Our results indicate that genome size may be under direct selection. The equal disadvantaging of either large or small genomes indicates that the selection for optimum genome size in species may be fully context dependent. This study demonstrates the power of competition experiments for the detection of weak selection processes.
- MeSH
- analýza rozptylu MeSH
- biomasa MeSH
- Festuca genetika růst a vývoj MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- listy rostlin MeSH
- molekulární evoluce MeSH
- neparametrická statistika MeSH
- populační genetika MeSH
- selekce (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ploidy levels and chromosome numbers for 24 species of Festuca L. from 29 sites in Bolivia, Colombia, Ecuador and Venezuela are given. The ploidy level of 22 species is reported for the first time. A higher proportion of tetraploids in northern South America and the high frequency of polyploids in the whole continent are documented. In combination with chromosome counts, ploidy level was determined using flow cytometry in 4- to 5 1/2 -year-old herbarium specimens and mature caryopses. Flow cytometric determination from seeds was more reliable than determination from herbarium specimens. In herbarium specimens, the youngest, fresh green leaves, still hidden in sheaths, seem to be most suitable for cytometric determination. In old, brownish leaves, or poorly preserved herbarium specimens, the degradation of DNA signal in flow histograms was documented. DNA content measured in seeds was always higher than that measured in herbarium specimens, which may be caused by the presence of different cytosolic compounds. Differences of about 15% in relative DNA content of F. sodiroana and F. vaginalis was found in simultaneous measurements in seeds.
- MeSH
- DNA rostlinná MeSH
- Festuca genetika klasifikace MeSH
- financování organizované MeSH
- ovoce MeSH
- ploidie MeSH
- průtoková cytometrie MeSH
- Geografické názvy
- Jižní Amerika MeSH