Shukla, Deepak*
Dotaz
Zobrazit nápovědu
Medicinal plants have been exploited for therapeutic purposes since the dawn of civilization and have long been acknowledged essential to human health. The purpose of this research is to examine the scientific evidence for using the therapeutic herbal plants Thalictrum foliolosum DC. and Cordia dichotoma G. Forst. to treat hepatitis illness. The fundamental explanation for the therapeutic relevance of these plants is phytochemicals, which were evaluated qualitatively and quantitatively in three separate extracts with different solvent properties (methanol-polar, chloroform-non-polar, and aqueous-polar as one of the bases of traditional use). Flavonoids, phenols, tannins, saponins, and alkaloids were all evaluated for their presence in plant extracts, and it was observed that methanolic extract had the highest content of phytochemicals among different extracts whereas, the aqueous extract showed least amount of phytochemicals. Additionally, the antioxidant activity of these plants was also evaluated and methanolic extract was revealed with potential antioxidant activity, as also evidenced by the lowest half inhibitory concentration (IC50) values in the DPPH, ABTS, and high %inhibition in μM Fe equivalent of FRAP assays. Following that, the dominant phytochemicals were investigated using ultra-high performance liquid chromatography from the selected plants. Furthermore, default docking algorithms were used to appraise the dominant phytoconstituents for their in-silico investigation, in which rutin was found with the highest binding affinity (8.2 kcal/mol) and interaction with receptor which is further involved in causing jaundice. The receptor is infact an enzyme that is sphingomyelin phosphodiesterase Leptospira interrogans (PDB: 5EBB) which is holded back in its position by rutin and do not interact with Leptospira inferrogans spp which causes jaundice. Overall, the study suggested that these herbs have significant therapeutic properties, and their in-silico analysis strongly recommends further clinical investigations to get insight into the mechanisms of action in curing variety of diseases.
- MeSH
- antioxidancia farmakologie analýza MeSH
- Cordia * MeSH
- flavonoidy farmakologie analýza MeSH
- fytonutrienty analýza MeSH
- lidé MeSH
- methanol MeSH
- rostlinné extrakty chemie MeSH
- rutin MeSH
- simulace molekulární dynamiky MeSH
- Thalictrum * MeSH
- žloutenka * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
- MeSH
- big data * MeSH
- glioblastom * MeSH
- lidé MeSH
- šíření informací MeSH
- strojové učení MeSH
- vzácné nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- MeSH
- autofagie * fyziologie MeSH
- autofagozomy MeSH
- biologické markery MeSH
- biotest normy MeSH
- lidé MeSH
- lyzozomy MeSH
- proteiny spojené s autofagií metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- směrnice MeSH