redox changes of P700
Dotaz
Zobrazit nápovědu
BACKGROUND: With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE: In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS: We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
- MeSH
- biomasa MeSH
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosyntéza * MeSH
- fotosystém II (proteinový komplex) MeSH
- kyslík MeSH
- lidé MeSH
- světlo MeSH
- transport elektronů MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Mechanisms of pharmaceuticals action on biochemical and physiological processes in plants that determine plant growth and development are still mostly unknown. This study deals with the effects of non-steroidal anti-inflammatory drug diclofenac (DCF) on photosynthesis as an essential anabolic process. Changes in primary and secondary photosynthetic processes were assessed in chloroplasts isolated from Lemna minor exposed to 1, 10, 100, and 1000 μM DCF. Decreases in the potential and effective quantum yields of photosystem II (FV/FM by 21%, ΦII by 44% compared to control), changes in non-photochemical fluorescence quenching (NPQ), and a substantial drop in Hill reaction activity (by 73%), especially under 1000 μM DCF, were found. Limitation of electron transport through photosystem II was confirmed by increased fluorescence signals in steps J and I (by 50% and 23%, respectively, under 1000 μM DCF) in OJIP fluorescence transient. Photosystem I exhibited changes only in the redox state of P700 reaction centres (decrease in Pm by 10%, increase in reduced P700 by 5% under 1000 μM DCF). Similarly, RuBisCO activity was only lowered by 30% under 1000 μM DCF. In contrast, a significant increase in reactive oxygen and nitrogen species (by 116% and 157%, respectively) was observed under 10 μM DCF, and lipid peroxidation increased even at 1 μM DCF (by nearly seven times compared to the control). Results demonstrate the ability of environmentally relevant DCF concentrations to induce oxidative stress in isolated duckweed chloroplasts; however, photosynthetic processes were affected considerably only by the highest DCF treatments.
- MeSH
- Araceae účinky léků růst a vývoj ultrastruktura MeSH
- chloroplasty účinky léků metabolismus MeSH
- diklofenak farmakologie toxicita MeSH
- fotosyntéza účinky léků MeSH
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) účinky léků metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
Photo-reduction of O2to water mediated by flavodiiron proteins (FDPs) represents a safety valve for the photosynthetic electron transport chain in fluctuating light. So far, the FDP-mediated O2photo-reduction has been evidenced only in cyanobacteria and the moss Physcomitrella; however, a recent phylogenetic analysis of transcriptomes of photosynthetic organisms has also revealed the presence of FDP genes in several nonflowering plant groups. What remains to be clarified is whether the FDP-dependent O2photo-reduction is actually operational in these organisms. We have established a simple method for the monitoring of FDP-mediated O2photo-reduction, based on the measurement of redox kinetics of P700 (the electron donor of photosystem I) upon dark-to-light transition. The O2photo-reduction is manifested as a fast re-oxidation of P700. The validity of the method was verified by experiments with transgenic organisms, namely FDP knock-out mutants of Synechocystis and Physcomitrella and transgenic Arabidopsis plants expressing FDPs from Physcomitrella. We observed the fast P700 re-oxidation in representatives of all green plant groups excluding angiosperms. Our results provide strong evidence that the FDP-mediated O2photo-reduction is functional in all nonflowering green plant groups. This finding suggests a major change in the strategy of photosynthetic regulation during the evolution of angiosperms.