Twelve novel analogs of STAT3 inhibitor BP-1-102 were designed and synthesised with the aim to modify hydrophobic fragments of the molecules that are important for interaction with the STAT3 SH2 domain. The cytotoxic activity of the reference and novel compounds was evaluated using several human and two mouse cancer cell lines. BP-1-102 and its two analogs emerged as effective cytotoxic agents and were further tested in additional six human and two murine cancer cell lines, in all of which they manifested the cytotoxic effect in a micromolar range. Reference compound S3I-201.1066 was found ineffective in all tested cell lines, in contrast to formerly published data. The ability of selected BP-1-102 analogs to induce apoptosis and inhibition of STAT3 receptor-mediated phosphorylation was confirmed. The structure-activity relationship confirmed a demand for two hydrophobic substituents, i.e. the pentafluorophenyl moiety and another spatially bulky moiety, for effective cytotoxic activity and STAT3 inhibition.
- MeSH
- apoptóza účinky léků MeSH
- fosforylace účinky léků MeSH
- hydrofobní a hydrofilní interakce MeSH
- kultivované buňky MeSH
- kyseliny aminosalicylové chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- racionální návrh léčiv * MeSH
- sulfonamidy chemická syntéza chemie farmakologie MeSH
- transkripční faktor STAT3 antagonisté a inhibitory metabolismus MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cellular senescence is the process of the permanent proliferative arrest of cells in response to various inducers. It is accompanied by typical morphological changes, in addition to the secretion of bioactive molecules, including proinflammatory cytokines and chemokines [known as the senescence-associated secretory phenotype (SASP)]. Thus, senescent cells may affect their local environment and induce a so-called 'bystander' senescence through the state of SASP. The phenotypes of senescent cells are determined by the type of agent inducing cellular stress and the cell lineages. To characterise the phenotypes of senescent cancer cells, two murine cell lines were employed in the present study: TC-1 and B16F10 (B16) cells. Two distinct senescence inductors were used: Chemotherapeutic agent docetaxel (DTX) and a combination of immunomodulatory cytokines, including interferon γ (IFNγ) and tumour necrosis factor α (TNFα). It was demonstrated that DTX induced senescence in TC-1 and B16 tumour cell lines, which was demonstrated by growth arrest, positive β-galactosidase staining, increased p21Waf1 (p21) expression and the typical SASP capable of inducing a 'bystander' senescence. By contrast, treatment with a combination of T helper cell 1 cytokines, IFNγ and TNFα, induced proliferation arrest only in B16 cells. Despite the presence of certain characteristic features resembling senescent cells (proliferation arrest, morphological changes and increased p21 expression), these cells were able to form tumours in vivo and started to proliferate upon cytokine withdrawal. In addition, B16 cells were not able to induce a 'bystander' senescence. In summary, the present study described cell line- and treatment-associated differences in the phenotypes of senescent cells that may be relevant in optimization of cancer chemo- and immunotherapy.
- MeSH
- bystander efekt účinky léků imunologie MeSH
- docetaxel farmakologie terapeutické užití MeSH
- fenotyp MeSH
- interferon gama imunologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie imunologie patologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- stárnutí buněk účinky léků imunologie MeSH
- TNF-alfa imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have recently been shown to be a promising tool for prostate cancer chemoimmunotherapy. In this study, DC-based vaccines, both pulsed and unpulsed, were as effective as docetaxel (DTX) in reducing prostate tumors in the orthotopic transgenic adenocarcinoma of the mouse prostate (TRAMP) model. However, we did not observe any additive or synergic effects of chemoimmunotherapy on the tumor growth, while only the combination of DTX and pulsed dendritic cells resulted in significantly lower proliferation detected by Ki67 staining in histological samples. The DC-based vaccine pulsed with HHP-treated tumor cells was also combined with another type of cytostatic, cyclophosphamide, with similar results. In another clinically relevant setting, minimal residual tumor disease after surgery, administration of DC-based vaccines after the surgery of poorly immunogenic transplanted TRAMP-C2, as well as in immunogenic TC-1 tumors, reduced the growth of tumor recurrences. To identify the effector cell populations after DC vaccine application, mice were twice immunized with both pulsed and unpulsed DC vaccine, and the cytotoxicity of the spleen cells populations was tested. The effector cell subpopulations were defined as CD4+ and NK1.1+, which suggests rather unspecific therapeutic effects of the DC-based vaccines in our settings. Taken together, our data demonstrate that DC-based vaccines represent a rational tool for the treatment of human prostate cancer.
- Publikační typ
- časopisecké články MeSH
High hydrostatic pressure (HHP) has been shown to induce immunogenic cell death of cancer cells, facilitating their uptake by dendritic cells (DC) and subsequent presentation of tumor antigens. In the present study, we demonstrated immunogenicity of the HHP-treated tumor cells in mice. HHP was able to induce immunogenic cell death of both TC-1 and TRAMP-C2 tumor cells, representing murine models for human papilloma virus-associated tumors and prostate cancer, respectively. HHP-treated cells induced stronger immune responses in mice immunized with these tumor cells, documented by higher spleen cell cytotoxicity and increased IFNγ production as compared to irradiated tumor cells, accompanied by suppression of tumor growth in vivo in the case of TC-1 tumors, but not TRAMP-C2 tumors. Furthermore, HHP-treated cells were used for DC-based vaccine antigen pulsing. DC co-cultured with HHP-treated tumor cells and matured by a TLR 9 agonist exhibited higher cell surface expression of maturation markers and production of IL-12 and other cytokines, as compared to the DC pulsed with irradiated tumor cells. Immunization with DC cell-based vaccines pulsed with HHP-treated tumor cells induced high immune responses, detected by increased spleen cell cytotoxicity and elevated IFNγ production. The DC-based vaccine pulsed with HHP-treated tumor cells combined with docetaxel chemotherapy significantly inhibited growth of both TC-1 and TRAMP-C2 tumors. Our results indicate that DC-based vaccines pulsed with HHP-inactivated tumor cells can be a suitable tool for chemoimmunotherapy, particularly with regard to the findings that poorly immunogenic TRAMP-C2 tumors were susceptible to this treatment modality.
- MeSH
- antigeny nádorové metabolismus MeSH
- cytotoxicita imunologická MeSH
- dendritické buňky cytologie MeSH
- experimentální nádory farmakoterapie terapie MeSH
- hydrostatický tlak MeSH
- imunitní systém MeSH
- imunoterapie metody MeSH
- infekce papilomavirem farmakoterapie terapie MeSH
- interferon gama metabolismus MeSH
- interleukin-12 metabolismus MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty farmakoterapie metabolismus terapie MeSH
- protinádorové látky aplikace a dávkování MeSH
- protinádorové vakcíny chemie MeSH
- slezina imunologie MeSH
- taxoidy aplikace a dávkování MeSH
- toll-like receptor 9 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms.
- MeSH
- buňky NK imunologie patologie MeSH
- experimentální nádory genetika imunologie patologie MeSH
- lektinové receptory NK-buněk - podrodina K biosyntéza imunologie MeSH
- lidé MeSH
- MHC antigeny I. třídy genetika imunologie MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- regulace genové exprese u nádorů genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo.
- MeSH
- bystander efekt účinky léků MeSH
- časové faktory MeSH
- cytokiny genetika metabolismus MeSH
- experimentální nádory genetika metabolismus terapie MeSH
- imunoterapie adoptivní metody MeSH
- interleukin-12 biosyntéza farmakologie MeSH
- kombinovaná terapie MeSH
- myši inbrední C57BL MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- stárnutí buněk účinky léků MeSH
- taxoidy farmakologie MeSH
- tumor burden účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFNγ. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFNγ treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFNγ-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFNγ or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFNγ acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes.
- MeSH
- down regulace MeSH
- epigeneze genetická MeSH
- fibrosarkom genetika imunologie metabolismus MeSH
- geny MHC třídy I * MeSH
- interferon gama genetika imunologie metabolismus MeSH
- metylace DNA * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- prezentace antigenu genetika MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce MeSH
- transfekce MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) and CD1d-restricted invariant natural killer T (iNKT) cells are two cell types that are known to regulate immune reactions. Depletion or inactivation of Tregs using specific anti-CD25 antibodies in combination with immunostimulation is an attractive modality especially in anti-tumour immunotherapy. However, CD25 is not expressed exclusively on Tregs but also on subpopulations of activated lymphocytes. Therefore, the modulatory effects of the specific anti-CD25 antibodies can also be partially attributed to their interactions with the effector cells. Here, the effector functions of iNKT cells were analysed in combination with anti-CD25 mAb PC61. Upon PC61 administration, α-galactosylceramide (α-GalCer)-mediated activation of iNKT cells resulted in decreased IFN-γ but not IL-4 production. In order to determine whether mutual interactions between Tregs and iNKT cells take place, we compared IFNγ production after α-GalCer administration in anti-CD25-treated and "depletion of regulatory T cell" (DEREG) mice. Since no profound effects on IFNγ induction were observed in DEREG mice, deficient in FoxP3(+) Tregs, our results indicate that the anti-CD25 antibody acts directly on CD25(+) effector cells. In vivo experiments demonstrated that although both α-GalCer and PC61 administration inhibited TC-1 tumour growth in mice, no additive/synergic effects were observed when these substances were used in combination therapy.
- MeSH
- antigeny CD1d imunologie metabolismus MeSH
- ELISA MeSH
- experimentální nádory farmakoterapie imunologie patologie MeSH
- exprese genu účinky léků imunologie MeSH
- forkhead transkripční faktory imunologie metabolismus MeSH
- galaktosylceramidy aplikace a dávkování imunologie farmakologie MeSH
- interferon gama genetika imunologie metabolismus MeSH
- interleukin-4 genetika imunologie metabolismus MeSH
- Kaplanův-Meierův odhad MeSH
- mezibuněčné signální peptidy a proteiny genetika imunologie metabolismus MeSH
- monoklonální protilátky aplikace a dávkování imunologie farmakologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- NKT buňky účinky léků imunologie metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- průtoková cytometrie MeSH
- receptor interleukinu-2 - alfa-podjednotka imunologie metabolismus MeSH
- regulační T-lymfocyty účinky léků imunologie metabolismus MeSH
- tumor burden účinky léků imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myeloid-derived suppressor cells (MDSC) play an important role in tumor escape from antitumor immunity. MDSC accumulate in the lymphoid organs and blood during tumor growth and their mobilization was also reported after cyclophosphamide (CY) administration. In this communication, spleen MDSC accumulating after CY therapy (CY-MDSC) were compared with those expanded in mice bearing human papilloma viruses 16-associated TC-1 carcinoma (TU-MDSC). Although both CY-MDSC and TU-MDSC accelerated growth of TC-1 tumors in vivo, their phenotype and immunosuppressive function differed. CY-MDSC consisted of higher percentage of monocyte-like subpopulation and this was accompanied by lower relative expression of immunosuppressive genes and lower suppression of T-cell proliferation. After interferon-γ stimulation, the expression of immunosuppressive genes increased, but the suppressive ability of CY-MDSC did not reach that of TU-MDSC. The phenotype and function of MDSC obtained from mice bearing TC-1 tumors treated with CY was, in general, found to lie between CY-MDSC and TU-MDSC. After in vitro cultivation of MDSC in the presence of interleukin 12 (IL-12), the percentage of CD11b+/Gr-1+ cells decreased and was accompanied by an increase in the percentage of CD86+/MHCII+ cells. The strongest modulatory effect was noticed in the group of CY-MDSC. The susceptibility of CY-MDSC to all-trans-retinoic acid (ATRA) was also evaluated. In vitro cultivation with ATRA resulted in MDSC differentiation, and ATRA inhibited MDSC accumulation induced by CY administration. Our findings identified differences between CY-MDSC and TU-MDSC and supported the rationale for utilization of ATRA or IL-12 to alter MDSC accumulation after CY chemotherapy with the aim to improve its antitumor effect.
- MeSH
- aktivace lymfocytů MeSH
- antigeny CD11b biosyntéza imunologie MeSH
- antigeny CD86 biosyntéza imunologie MeSH
- buněčná diferenciace účinky léků MeSH
- cyklofosfamid farmakologie MeSH
- experimentální nádory imunologie patologie virologie MeSH
- interferon gama farmakologie MeSH
- interleukin-12 farmakologie MeSH
- lidé MeSH
- lidský papilomavirus 16 imunologie MeSH
- myeloidní buňky účinky léků imunologie patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- regulace genové exprese u nádorů MeSH
- slezina účinky léků imunologie patologie MeSH
- T-lymfocyty účinky léků imunologie patologie MeSH
- transplantace nádorů MeSH
- tretinoin farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Loss or downregulation of MHC class I molecules on tumour cells is a common mechanism by which tumours can escape T-cell mediated immune responses. In this study, we examined the role of different immune cell lineages in the development of immunity against tumours of the same aetiology but with different MHC class I expression. In vivo depletion of CD8+ cells, but not of CD4+ or NK1.1+ cells in the immunization period resulted in complete elimination of the protective effects of immunization with irradiated TC-1 cells (MHC class I-positive cell line) against the TC-1 tumour challenge. After immunization with irradiated TC-1/A9 or with MK16 tumour cells (MHC class I-deficient sublines) a remarkable dependence on the presence of NK1.1+ cells was observed, while the tumour growth inhibition after CD4+ or CD8+ depletion was not efficient. Cytotoxic activity induced by TC-1 cell immunization was significantly abrogated in the CD8+ and CD4+ but not NK1.1+ cell-depleted mice, as compared to the immunized only controls. After MK16 or TC-1/A9 cell immunization, NK1.1+ but not CD8+ and CD4+ cell-depleted mice displayed significant reduction of specific cytotoxicity. Mice immunized with TC-1 cells showed similar percentage of IFNγ producing cells in CD8+, CD4+ and NK1.1+ cell populations. On the other hand, the highest proportion of IFNγ producing cells after immunization with TC-1/A9 or MK16 cells was concentrated into the NK1.1-positive spleen cell population. Our data demonstrate that the development of immunity against MHC class I-deficient tumours is highly dependent on the activity NK1.1+ cell population.
- MeSH
- antigeny Ly imunologie MeSH
- buňky NK imunologie MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- ELISA MeSH
- experimentální nádory imunologie MeSH
- lektinové receptory NK-buněk - podrodina B imunologie MeSH
- lidský papilomavirus 16 MeSH
- MHC antigeny I. třídy imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- protinádorové vakcíny imunologie MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH