African trypanosomes are medically important parasites that cause sleeping sickness in humans and nagana in animals. In addition to their pathogenic role, they have emerged as valuable model organisms for studying fundamental biological processes. Protein tagging is a powerful tool for investigating protein localization and function. In a previous study, we developed two plasmids for rapid and reproducible polymerase chain reaction-based protein tagging in trypanosomes, which enabled the subcellular mapping of 89% of the trypanosome proteome. However, the limited selection of fluorescent protein tags and selectable markers restricted the flexibility of this approach. Here, we present an extended set of >100 plasmids that incorporate universal primer annealing sequences, enabling protein tagging with a range of fluorescent, biochemical and epitope tags, using five different selection markers. We evaluated the suitability of various fluorescent proteins for live and fixed cell imaging, fluorescent movies, and we demonstrate the use of tagging plasmids encoding tandem epitope tags to support expansion microscopy approaches. We show that this series of plasmids is functional in other trypanosomatid parasites, significantly increasing its value. Finally, we developed a new plasmid for tagging glycosylphosphatidylinositol-anchored proteins. We anticipate that this will be an important toolset for investigating trypanosomatid protein localization and function.
- MeSH
- Humans MeSH
- Plasmids genetics MeSH
- Protozoan Proteins * metabolism genetics MeSH
- Protein Transport MeSH
- Trypanosoma brucei brucei metabolism genetics MeSH
- Trypanosomatina * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
- MeSH
- Eukaryotic Initiation Factor-4A metabolism genetics MeSH
- Exons genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Nonsense Mediated mRNA Decay * MeSH
- Protozoan Proteins * metabolism genetics MeSH
- RNA Splicing MeSH
- Trypanosoma brucei brucei * metabolism genetics MeSH
- Publication type
- Journal Article MeSH
Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.
- MeSH
- DNA, Mitochondrial * genetics metabolism MeSH
- Mitochondrial Proteins metabolism genetics MeSH
- Mitochondria metabolism genetics MeSH
- Evolution, Molecular MeSH
- Protozoan Proteins * metabolism genetics MeSH
- DNA Replication * MeSH
- Trypanosoma brucei brucei * metabolism genetics MeSH
- Publication type
- Journal Article MeSH
Haptoglobin is a plasma protein of mammals that plays a crucial role in vascular homeostasis by binding free haemoglobin released from ruptured red blood cells. Trypanosoma brucei can exploit this by internalising haptoglobin-haemoglobin complex to acquire host haem. Here, we investigated the impact of haptoglobin deficiency (Hp-/-) on T. brucei brucei infection and the parasite ́s capacity to internalise haemoglobin in a Hp-/- mouse model. The infected Hp-/- mice exhibited normal disease progression, with minimal weight loss and no apparent organ pathology, similarly to control mice. While the proteomic profile of mouse sera significantly changed in response to T. b. brucei, no differences in the infection response markers of blood plasma between Hp-/- and control Black mice were observed. Similarly, very few quantitative differences were observed between the proteomes of parasites harvested from Hp-/- and Black mice, including both endogenous proteins and internalised host proteins. While haptoglobin was indeed absent from parasites isolated from Hp-/-mice, haemoglobin peptides were unexpectedly detected in parasites from both Hp-/- and Black mice. Combined, the data support the dispensability of haptoglobin for haemoglobin internalisation by T. b. brucei during infection in mice. Since the trypanosomes knock-outs for their haptoglobin-haemoglobin receptor (HpHbR) internalised significantly less haemoglobin from Hp-/- mice compared to those isolated from Black mice, it suggests that T. b. brucei employs also an HpHbR-independent haptoglobin-mediated mode for haemoglobin internalisation. Our study reveals a so-far hidden flexibility of haemoglobin acquisition by T. b. brucei and offers novel insights into alternative haemoglobin uptake pathways.
- MeSH
- Haptoglobins * genetics metabolism MeSH
- Hemoglobins * metabolism MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Proteomics methods MeSH
- Trypanosoma brucei brucei * metabolism MeSH
- Trypanosomiasis, African * parasitology immunology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few of the proteins involved have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered that TFPs are recruited to the mature basal body before and after basal body duplication, with differential expression of five TFPs observed at the assembling new flagellum compared to the existing fixed-length old flagellum. RNAi-mediated depletion of 17 TFPs revealed six TFPs that are necessary for ciliogenesis and a further three TFPs that are necessary for normal flagellum length. We identified nine TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and flagellum length regulation.
- MeSH
- Basal Bodies metabolism MeSH
- Time Factors MeSH
- Cilia genetics metabolism MeSH
- Flagella genetics metabolism MeSH
- Conserved Sequence MeSH
- Protozoan Proteins * genetics metabolism MeSH
- Gene Expression Regulation MeSH
- Protein Transport MeSH
- Trypanosoma brucei brucei * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by Plasmodium falciparum and Plasmodium vivax, Trypanosoma brucei, Mycobacterium tuberculosis, and Helicobacter pylori. Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have Ki values ranging from 3 nM to >10 μM, depending on the structure of the inhibitor and the biological origin of the enzyme. X-ray crystal structures show that, on binding, these prolinol-containing inhibitors stimulated the movement of active site loops in the enzyme. Against TBr in cell culture, a prodrug exhibited an EC50 of 10 μM. Thus, these compounds are excellent candidates for further development as drug leads against infectious diseases as well as being potential anticancer agents.
- MeSH
- Enzyme Inhibitors * pharmacology chemistry chemical synthesis MeSH
- Catalytic Domain MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Pentosyltransferases * antagonists & inhibitors metabolism MeSH
- Drug Design * MeSH
- Trypanosoma brucei brucei drug effects enzymology MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Chagas disease (CD) is a neglected disease caused by Trypanosoma cruzi Chagas, 1909. Causative treatment can be achieved with two drugs: benznidazole or Nifurtimox. There are some gaps that hinder progress in eradicating the disease. There is no test that can efficiently assess cure control after treatment. Currently, the decline in anti-T. cruzi antibody titres is assessed with conventional serological tests, which can take years. However, the search for new markers of cure must continue to fill this gap. The present study aimed to evaluate the decline in serological titres using chimeric proteins after treatment with benznidazole in chronic patients diagnosed with CD. It was a prospective cross-sectional cohort study between 2000 and 2004 of T. cruzi-positive participants from the Añatuya region (Argentina) treated with benznidazole. Serum samples from ten patients were collected before treatment (day zero) and after the end of treatment (2, 3, 6, 12, 24 and 36 months). For the detection of anti-T. cruzi antibodies, an indirect ELISA was performed using two chimeric recombinant proteins (IBMP-8.1 and IBMP-8.4) as antigens. The changes in reactivity index within the groups before and after treatment were evaluated using the Friedman test. All participants experienced a decrease in serological titres after treatment with benznidazole, especially IBMP-8.1. However, due to the small number of samples and the short follow-up period, it is premature to conclude that this molecule serves as a criterion for sustained cure. Further studies are needed to validate tests based on these or other biomarkers to demonstrate parasitological cure.
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Phosphofructokinases metabolism MeSH
- Gluconeogenesis * genetics MeSH
- Glucose metabolism MeSH
- Glycerol metabolism MeSH
- Humans MeSH
- Mammals MeSH
- Transaldolase metabolism MeSH
- Trypanosoma brucei brucei * genetics metabolism MeSH
- Carbon metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
- MeSH
- Eukaryota genetics MeSH
- Genetic Code MeSH
- Parasites * genetics MeSH
- Codon, Terminator MeSH
- Trypanosoma brucei brucei * genetics MeSH
- Trypanosomatina * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 μM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 μM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE: Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.
- MeSH
- Antiparasitic Agents therapeutic use MeSH
- Chagas Disease * drug therapy MeSH
- Leucyl Aminopeptidase chemistry pharmacology therapeutic use MeSH
- Humans MeSH
- Drug Discovery MeSH
- Trypanocidal Agents * therapeutic use MeSH
- Trypanosoma cruzi * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH