Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
- MeSH
- Characiformes * genetika MeSH
- chromozom Y genetika MeSH
- hybridizace in situ fluorescenční * MeSH
- karyotyp MeSH
- meióza genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy * genetika MeSH
- satelitní DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
- MeSH
- karyotyp * MeSH
- karyotypizace * MeSH
- malování chromozomů MeSH
- molekulární evoluce * MeSH
- umělé bakteriální chromozomy genetika MeSH
- vysoká zvěř * genetika klasifikace MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Spontánní potraty v prvním trimestru představují klinicky významný problém, který může postihnout až 15 % rozpoznaných gravidit. Příčiny časných těhotenských ztrát jsou velmi heterogenní a zahrnují faktory genetické, environmetální i imunologické. Ačkoli je hlavním úkolem patologa především vyloučení molární gravidity, může i konvenční histologické vyšetření v některých případech přispět k objasnění příčiny abortu a managementu další gravidity, zvláště v případě lézí s vysokým rizikem recidivy, které mohou vést k habituálnímu potrácení.
Spontaneous abortions in the first trimester of gravidity represent a clinically significant problem that can affect up to 15% of recognized pregnancies. The causes of early pregnancy loss are very heterogeneous and include genetic, environmental and immunological factors. Although the pathologist‘s main task is to exclude molar pregnancy, in some cases conventional histological examination can also contribute to the elucidation of the cause of miscarriage and the management of subsequent pregnancies, especially in the case of lesions with a high risk of recurrence that may lead to habitual abortion.
- MeSH
- abnormální karyotyp MeSH
- komplikace těhotenství MeSH
- lidé MeSH
- první trimestr těhotenství MeSH
- samovolný potrat * patologie MeSH
- těhotenství MeSH
- trizomie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- přehledy MeSH
Mast cell leukemia (MCL) is a rare subtype of systemic mastocytosis defined by ≥20% mast cells (MC) on a bone marrow aspirate. We evaluated 92 patients with MCL from the European Competence Network on Mastocytosis registry. Thirty-one (34%) patients had a diagnosis of MCL with an associated hematologic neoplasm (MCL-AHN). Chronic MCL (lack of C-findings) comprised 14% of patients, and only 4.5% had "leukemic MCL" (≥10% circulating MCs). KIT D816V was found in 62/85 (73%) evaluable patients; 9 (11%) individuals exhibited alternative KIT mutations, and no KIT variants were detected in 14 (17%) subjects. Ten evaluable patients (17%) had an abnormal karyotype and the poor-risk SRSF2, ASXL1, and RUNX1 (S/A/R) mutations were identified in 16/36 (44%) patients who underwent next-generation sequencing. Midostaurin was the most common therapy administered to 65% of patients and 45% as first-line therapy. The median overall survival (OS) was 1.6 years. In multivariate analysis (S/A/R mutations excluded owing to low event rates), a diagnosis of MCL-AHN (hazard ratio [HR], 4.7; 95% confidence interval [CI], 1.7-13.0; P = .001) and abnormal karyotype (HR, 5.6; 95% CI, 1.4-13.3; P = .02) were associated with inferior OS; KIT D816V positivity (HR, 0.33; 95% CI, 0.11-0.98; P = .04) and midostaurin treatment (HR, 0.32; 95% CI, 0.08-0.72; P = .008) were associated with superior OS. These data provide the most comprehensive snapshot of the clinicopathologic, molecular, and treatment landscape of MCL to date, and should help further inform subtyping and prognostication of MCL.
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Miniature refers to species with extraordinarily small adult body size when adult and can be found within all major metazoan groups. It is considered that miniature species have experienced severe alteration of numerous morphological traits during evolution. For a variety of reasons, including severe labor concerns during collecting, chromosomal acquisition, and taxonomic issues, miniature fishes are neglected and understudied. Since some available studies indicate possible relationship between diploid chromosome number (2n) and body size in fishes, we aimed to study one of the smallest Neotropical fish Nannostomus anduzei (Teleostei, Characiformes, Lebiasinidae), using both conventional (Giemsa staining, C-banding) and molecular cytogenetic methods (FISH mapping of rDNAs, microsatellites, and telomeric sequences). Our research revealed that N. anduzei possesses one of the lowest diploid chromosome numbers (2n = 22) among teleost fishes, and its karyotype is entirely composed of large metacentric chromosomes. All chromosomes, except for pair number 11, showed an 18S rDNA signal in the pericentromeric region. 5S rDNA signals were detected in the pericentromeric regions of chromosome pair number 1 and 6, displaying synteny to 18S rDNA signals. Interstitial telomeric sites (ITS) were identified in the centromeric region of pairs 6 and 8, indicating that centric fusions played a significant role in karyotype evolution of studied species. Our study provides further evidence supporting the trend of diploid chromosome number reduction along with miniaturization of adult body size in fishes.
- MeSH
- Characiformes * genetika MeSH
- karyotyp MeSH
- karyotypizace MeSH
- ribozomální DNA genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.
- MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- můry * genetika MeSH
- pohlavní chromozomy genetika MeSH
- Saccharum * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Background: Life-threatening cardiovascular complications significantly reduce the life expectancy in patients with Turner syndrome (TS). The genetic basis of cardiovascular disease in TS has not been defined yet. Aims: To determine the prevalence of cardiovascular disease in different cytogenetic subgroups of TS; to find out which germ layer is the most appropriate for genetic prediction of the cardiovascular risk in TS; to test the hypothesis of hidden chromosomal mosaicism in all TS individuals. Methods: The study group will comprise of approximately 100 to 150 TS individuals. Karyotype in all three germ layers will be done. If TS diagnosed, all participants will undergo a complete cardiac examination including cardiac magnetic resonance imaging. Conclusion: It is suggested that the cytogenetic evaluation undoubtedly plays beside other risk factors an important role in cardiovascular risk stratification in TS. Such an approach may enable the identification of the highest risk patients and subsequent individualisation of their cardiovascular monitoring.
Život ohrožující kardiovaskulární komplikace (KV) signifikantně zkracují předpokládanou délku života u pacientek s Turnerovým syndromem (TS). Dosud nebyla jednoznačně definována genetická příčina KV onemocnění u TS. Cíle: Stanovení prevalence KV onemocnění u pacientek s Turnerovým syndromem rozdělených do podskupin dle cytogenetického nálezu; zhodnocení korelace KV rizika s karyotypem ze všech třech zárodečných listů; otestování hypotézy skrytého mozaicismu u TS. Metody: Do studie bude zahrnuto přibližně 100-150 pacientek s TS. Bude vyšetřen karyotyp ve všech třech zárodečných listech. Všechny nositelky TS podstoupí komplexní kardiologické vyšetření včetně magnetické rezonance (MRI) srdce. Závěr: Je pravděpodobné, že cytogenetické vyšetření hraje významnou roli při stratifikaci KV rizika u nositelek TS. Podrobné cytogenetické vyšetření spolu s MRI srdce by mohlo pomoci při identifikaci pacientek s nejvyšším KV rizikem a následně vést k individualizaci jejich kardiologického sledování.
- MeSH
- bikuspidální aortální chlopeň MeSH
- disekce aorty MeSH
- kardiovaskulární nemoci epidemiologie genetika MeSH
- karyotyp MeSH
- karyotypizace MeSH
- koarktace aorty MeSH
- magnetická rezonanční tomografie MeSH
- mozaicismus MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- srdce diagnostické zobrazování MeSH
- Turnerův syndrom komplikace MeSH
- zárodečné listy MeSH
- Check Tag
- ženské pohlaví MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- genetika, lékařská genetika
- kardiologie
- epidemiologie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Cervids are characterized by their greatest karyotypic diversity among mammals. A great diversity of chromosome numbers in notably similar morphological groups leads to the existence of several complexes of cryptic species and taxonomic uncertainties. Some deer lineages, such as those of Neotropical deer, stand out for a rapid chromosomal reorganization and intraspecific chromosome polymorphisms, which have not been properly explored yet. For that reason, we contribute to the study of deer karyotype diversity and taxonomy by producing and characterizing new molecular cytogenetic markers for the gray brocket deer (Subulo gouazoubira), a deer species that retained the hypothetical ancestral karyotype of Cervidae. We used bacterial artificial chromosome (BAC) clones derived from the cattle genome (Bos taurus) as markers, which were hybridized on S. gouazoubira metaphase chromosomes. In total, we mapped 108 markers, encompassing all gray brocket deer chromosomes, except the Y chromosome. The detailed analysis of fluorescent in situ hybridization results showed 6 fissions and 1 fusion as interchromosomal rearrangements that have separated cattle and gray brocket deer karyotypes. Each group of BAC probes derived from bovine chromosome pairs 1, 2, 5, 6, 8, and 9 showed hybridization signals on 2 different chromosomes, while pairs 28 and 26 are fused in tandem in a single acrocentric chromosome in S. gouazoubira. Furthermore, the BAC markers detected the occurrence of intrachromosomal rearrangements in the S. gouazoubira chromosomes homologous to pair 1 and the X chromosome of cattle. We present a karyotypic map of the 108 new markers, which will be of great importance for future karyotypic evolution studies in cervids and, consequently, help in their conservation and taxonomy resolution.