Freezing and lyophilization have been utilized for decades to stabilize pharmaceutical and food products. Freezing a solution that contains dissolved salt and/or organic matter produces pure primary ice crystal grains separated by freeze-concentrated solutions (FCS). The microscopic size of the primary ice crystals depends on the cooling conditions and the concentration of the solutes. It is generally accepted that primary ice crystals size influences the rate of sublimation and also can impact physico-chemical behaviour of the species in the FCS. This article, however, presents a case where the secondary ice formed inside the FCS plays a critical role. We microscoped the structures of ice-cast FCS with an environmental scanning electron microscope and applied the aggregation-sensitive spectroscopic probe methylene blue to determine how the microstructure affects the molecular arrangement. We show that slow cooling at -50 °C produces large salt crystals with a small specific surface, resulting in a high degree of molecular aggregation within the FCS. In contrast, fast liquid nitrogen cooling yields an ultrafine structure of salt crystals having a large specific surface area and, therefore, inducing smaller aggregation. The study highlights a critical role of secondary ice in solute aggregation and introduces methylene blue as a molecular probe to investigate freezing behaviour of aqueous systems with crystalline solute.
- MeSH
- led * MeSH
- lyofilizace MeSH
- methylenová modř * MeSH
- roztoky MeSH
- voda chemie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- led MeSH
- lidé MeSH
- techniky fyzikální terapie MeSH
- úrazy pádem * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- novinové články MeSH
Frozen aqueous solutions are an important subject of study in numerous scientific branches including the pharmaceutical and food industry, atmospheric chemistry, biology, and medicine. Here, we present an advanced environmental scanning electron microscope methodology for research of ice samples at environmentally relevant subzero temperatures, thus under conditions in which it is extremely challenging to maintain the thermodynamic equilibrium of the specimen. The methodology opens possibilities to observe intact ice samples at close to natural conditions. Based on the results of ANSYS software simulations of the surface temperature of a frozen sample, and knowledge of the partial pressure of water vapor in the gas mixture near the sample, we monitored static ice samples over several minutes. We also discuss possible artifacts that can arise from unwanted surface ice formation on, or ice sublimation from, the sample, as a consequence of shifting conditions away from thermodynamic equilibrium in the specimen chamber. To demonstrate the applicability of the methodology, we characterized how the true morphology of ice spheres containing salt changed upon aging and the morphology of ice spheres containing bovine serum albumin. After combining static observations with the dynamic process of ice sublimation from the sample, we can attain images with nanometer resolution.
Permafrost controls geomorphological dynamics in maritime Antarctic ecosystems. Here, we analyze and model ground thermal regime in bordering conditions between continuous and discontinuous permafrost to better understand its relationship with the timing of glacial retreat. In February 2017, a transect including 10 sites for monitoring ground temperatures was installed in the eastern fringe of Byers Peninsula (Livingston Island, northern Antarctic Peninsula), together with one station recording air temperatures and snow thickness. The sites were selected following the Mid-Late Holocene deglaciation of the area at a distance ranging from 0.30 to 3.15 km from the current Rotch Dome glacier front. The transect provided data on the effects of topography, snow cover and the timing of ice-free exposure, on the ground thermal regime. From February 2017 to February 2019, the mean annual air temperature was -2.0 °C, which was >0.5 °C higher than 1986-2015 average in the Western Antarctic Peninsula region. Mean annual ground temperature at 10 cm depth varied between 0.3 and -1.1 °C, similar to the modelled Temperatures on the Top of the Permafrost (TTOP) that ranged from 0.06 ± 0.08 °C to -1.33 ± 0.07 °C. The positive average temperatures at the warmest site were related to the long-lasting presence of snow which favoured warmer ground temperatures and may trigger permafrost degradation. The role of other factors (topography, and timing of the deglaciation) explained intersite differences, but the overall effect was not as strong as snow cover.
- MeSH
- ekosystém MeSH
- ledový příkrov MeSH
- ostrovy MeSH
- permafrost * MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
- ostrovy MeSH
Clearwater Mesa (James Ross Island, northeast Antarctic Peninsula) provides a unique opportunity to study solute dynamics and geochemical weathering in the pristine lacustrine systems of a high latitude environment. In order to determine major controls on the solute composition of these habitats, a geochemical survey was conducted on 35 lakes. Differences between lakes were observed based on measured physico-chemical parameters, revealing neutral to alkaline waters with total dissolved solids (TDS) < 2500 mg L-1. Katerina and Trinidad-Tatana systems showed an increase in their respective TDS, total organic carbon values, and finner sediments from external to internal lakes, indicating an accumulation of solutes due to weathering. Norma and Florencia systems exhibited the most diluted and circumneutral waters, likely from the influence of glacier and snow melt. Finally, isolated lakes presented large variability in TDS values, indicating weathering and meltwater contributions at different proportions. Trace metal abundances revealed a volcanic mineral weathering source, except for Pb and Zn, which could potentially indicate atmospheric inputs. Geochemical modelling was also conducted on a subset of connected lakes to gain greater insight into processes determining solute composition, resulting in the weathering of salts, carbonates and silicates with the corresponding generation of clays. We found CO2 consumption accounted for 20-30% of the total species involved in weathering reactions. These observations allow insights into naturally occurring geochemical processes in a pristine environment, while also providing baseline data for future research assessing the impacts of anthropogenic pollution and the effects of climate change.
- MeSH
- ekosystém MeSH
- geologické sedimenty chemie MeSH
- jezera chemie MeSH
- klimatické změny MeSH
- ledový příkrov chemie MeSH
- minerály analýza MeSH
- monitorování životního prostředí metody MeSH
- olovo analýza MeSH
- organické látky analýza MeSH
- počasí MeSH
- stopové prvky analýza MeSH
- uhličitany analýza MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
- Trinidad a Tobago MeSH
BACKGROUND: Quaternary climate fluctuations are an engine of biotic diversification. Global cooling cycles, such as the Last Glacial Maximum (LGM), are known to have fragmented the ranges of higher-latitude fauna and flora into smaller refugia, dramatically reducing species ranges. However, relatively less is known about the effects of cooling cycles on tropical biota. RESULTS: We analyzed thousands of genome-wide DNA markers across an assemblage of three closely related understorey-inhabiting scrubwrens (Sericornis and Aethomyias; Aves) from montane forest along an elevational gradient on Mt. Wilhelm, the highest mountain of Papua New Guinea. Despite species-specific differences in elevational preference, we found limited differentiation within each scrubwren species, but detected a strong genomic signature of simultaneous population expansions at 27-29 ka, coinciding with the onset of the LGM. CONCLUSION: The remarkable synchronous timing of population expansions of all three species demonstrates the importance of global cooling cycles in expanding highland habitat. Global cooling cycles have likely had strongly different impacts on tropical montane areas versus boreal and temperate latitudes, leading to population expansions in the former and serious fragmentation in the latter.
- MeSH
- biologická evoluce * MeSH
- databáze jako téma MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- jednonukleotidový polymorfismus genetika MeSH
- ledový příkrov * MeSH
- nadmořská výška MeSH
- počítačová simulace MeSH
- populační genetika MeSH
- pravděpodobnost MeSH
- sekvence nukleotidů MeSH
- zeměpis MeSH
- zpěvní ptáci růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Papua Nová Guinea MeSH
Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here, we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite) and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected 'bottlenecks' within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet, we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet.
- MeSH
- ekosystém MeSH
- koloběh uhlíku fyziologie MeSH
- ledový příkrov mikrobiologie MeSH
- Methylobacterium fyziologie MeSH
- mikrobiota fyziologie MeSH
- RNA ribozomální 16S genetika MeSH
- roční období MeSH
- sníh mikrobiologie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
- MeSH
- biodiverzita MeSH
- DNA bakterií MeSH
- fylogeneze * MeSH
- genotyp MeSH
- ledový příkrov mikrobiologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- sinice klasifikace genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
Microbes transported by glacial meltwater streams are thought to be a product of passive dispersal from both supra- and subglacial sources, though studies investigating the origins of these assemblages are scarce. Here, we conducted a survey within a large catchment containing multiple glaciers on Qeqertarsuaq (Disko Island), west Greenland, to investigate whether meltwater-exported microbial assemblages in suspended sediments differ between glacial meltwater streams, and if they reflect corresponding bulk subglacial and extraglacial sediment communities. Using 16S rRNA gene amplicon sequencing, we found proglacial stream assemblages substantially differ from one another, despite their close spatial proximity. Furthermore, proglacial stream assemblages were composed of greater proportions of Cyanobacteria compared to bulk subglacial sediment communities, dominated by Betaproteobacteria, demonstrating large contributions of meltwater and microbial cells from supraglacial habitats. Corresponding physico-chemical characteristics of meltwater suggest that streams draining smaller glaciers had more equal contributions of both supra- and subglacial inputs compared with the main catchment outlet, aligning with observed changes in assemblage structure, such as the decreased proportion of Cyanobacteria. These results suggest that glacier size and hydrological drainage systems may influence the structure of exported microbial assemblages, and collectively provide insights into their formation and fate in thiscurrent age of deglaciation.
- MeSH
- Betaproteobacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- ekosystém MeSH
- geologické sedimenty mikrobiologie MeSH
- hydrologie MeSH
- ledový příkrov mikrobiologie MeSH
- ostrovy MeSH
- řeky mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sinice klasifikace genetika izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
- ostrovy MeSH