The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.
The association of silver nanoparticles (AgNps) to sealant agent Palaseal® can be a promising alternative for complete denture wearers who may develop denture stomatitis (DS). The study aimed to evaluate the anti-Candida and biocompatible potential of silver nanoparticles synthesized by three routes associated with denture glaze to prevent and/or treat oral candidiasis. Surface acrylic resin specimens were treated with different associations of glaze with AgNps (VER+AgUV, VER+AgTurk and VER+AgGm). As controls, specimens were treated with glaze+nystatin (VER+Nyst), glaze only (VER) or submerged in PBS (PBS). Afterwards, Candida albicans biofilm was developed for 24 h, 15 d and 30 d. Subsequently, the biofilm was quantified by CFU/mL, XTT assay and confocal laser scanning microscopy. Fibroblasts were submitted to conditioned medium with the same associations for 24, 48 and 72 h and LIVE/DEAD® viability test was carried out. Regardless of the period, there was a significant reduction (p < 0.01) of viable fungal cells load, as well as inhibition of fungal metabolic activity, in specimens treated with glaze+AgNps associations, compared to VER and PBS. The anti-Candida effects of the associations were similar to the VER+Nyst group, with emphasis on VER+AgGm, which showed the highest percentage values of non-viable fungal cells maintained over time. The associations did not prove toxicity to fibroblasts. The AgNps exerted antimicrobial activity against C. albicans biofilms and are biocompatible. The most effective results were achieved with the association of glaze+silver nanoparticles synthesized by the green chemistry method (AgGm), proving to be an innovative alternative in the management of DS.
- MeSH
- antifungální látky * farmakologie chemie MeSH
- biofilmy * účinky léků MeSH
- Candida albicans * účinky léků MeSH
- fibroblasty účinky léků MeSH
- kovové nanočástice * chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- orální kandidóza farmakoterapie mikrobiologie MeSH
- stomatitida vyvolaná protézou * mikrobiologie farmakoterapie MeSH
- stříbro * farmakologie chemie MeSH
- zubní náhrady mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- vulvovaginální diskomfort,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- antifungální látky farmakologie terapeutické užití MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- bakteriální vaginóza farmakoterapie MeSH
- benzydamin farmakologie terapeutické užití MeSH
- Candida albicans patogenita účinky léků MeSH
- herpes genitalis farmakoterapie patologie MeSH
- lidé MeSH
- probiotika terapeutické užití MeSH
- trichomoniáza farmakoterapie patologie MeSH
- vulvovaginitida * etiologie farmakoterapie MeSH
- Check Tag
- lidé MeSH
A series of N-pyridinylbenzamides was designed and prepared to investigate the influence of isosterism and positional isomerism on antimycobacterial activity. Comparison to previously published isosteric N-pyrazinylbenzamides was made as an attempt to draw structure-activity relationships in such type of compounds. In total, we prepared 44 different compounds, out of which fourteen had minimum inhibitory concentration (MIC) values against Mycobacterium tuberculosis H37Ra below 31.25 μg/ml, most promising being N-(5-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (23) and N-(6-chloropyridin-2-yl)-3-(trifluoromethyl)benzamide (24) with MIC = 7.81 μg/ml (26 μm). Five compounds showed broad-spectrum antimycobacterial activity against M. tuberculosis H37Ra, M. smegmatis and M. aurum. N-(pyridin-2-yl)benzamides were generally more active than N-(pyridin-3-yl)benzamides, indicating that N-1 in the parental structure of N-pyrazinylbenzamides might be more important for antimycobacterial activity than N-4. Marginal antibacterial and antifungal activity was observed for title compounds. The hepatotoxicity of title compounds was assessed in vitro on hepatocellular carcinoma cell line HepG2, and they may be considered non-toxic (22 compounds with IC50 over 200 μm).
- MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- Aspergillus účinky léků MeSH
- benzamidy chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- Candida albicans účinky léků MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium smegmatis účinky léků MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Candida albicans is an opportunistic pathogen accounting for the majority of cases of Candida infections. Currently, C. albicans are developing resistance towards different classes of antifungal drugs and this has become a global health burden that does not spare Lebanon. This study aims at determining point mutations in genes known to be involved in resistance acquisition and correlating resistance to virulence and ergosterol content in the azole resistant C. albicans isolate CA77 from Lebanon. This pilot study is the first of its kind to be implemented in Lebanon. We carried out whole genome sequencing of the azole resistant C. albicans isolate CA77 and examined 18 genes involved in antifungal resistance. To correlate genotype to phenotype, we evaluated the virulence potential of this isolate by injecting it into BALB/c mice and we quantified membrane ergosterol. Whole genome sequencing revealed that eight out of 18 genes involved in antifungal resistance were mutated in previously reported and novel residues. These genotypic changes were associated with an increase in ergosterol content but no discrepancy in virulence potential was observed between our isolate and the susceptible C. albicans control strain SC5314. This suggests that antifungal resistance and virulence potential in this antifungal resistant isolate are not correlated and that resistance is a result of an increase in membrane ergosterol content and the occurrence of point mutations in genes involved in the ergosterol biosynthesis pathway.
- MeSH
- azoly farmakologie MeSH
- bodová mutace MeSH
- Candida albicans chemie účinky léků genetika patogenita MeSH
- ergosterol analýza MeSH
- fenotyp MeSH
- fungální léková rezistence genetika MeSH
- genotyp MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pilotní projekty MeSH
- sekvenování celého genomu * MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Libanon MeSH
Globally, the occurrence of biofilm associated infection has become an alarming menace to the medical fraternity because the thick exopolysaccharide layer encasing the biofilms makes the biofilm producing pathogens inherently resistant to antibiotics. Candida albicans, the most common pathogen among Candida spp. is the causative agent for superficial and invasive candidiasis. The morphological phase switching from yeast to hyphal form is one of the virulent traits of C. albicans critical for its pathogenicity. Owing to the emergence of antifungal resistance among this opportunistic fungus, there is a dire need for improvised alternative antifungal agents. In the present study, we have evaluated a biosurfactant from a marine bacterium for its biofilm disruption ability against C. albicans. This biosurfactant had the potential to disrupt biofilms as well as to inhibit the morphological transition from yeast to hyphae. In addition, this biosurfactant showed enhance disruption of mixed species biofilms of C. albicans and Staphylococcus epidermidis when combined with DNase isolated from marine bacteria. From the results obtained, it is evident that the biosurfactant could act as a potential antibiofilm agent against drug resistant C. albicans strains.
- MeSH
- antifungální látky farmakologie MeSH
- Bacteria * enzymologie MeSH
- biofilmy * účinky léků MeSH
- Candida albicans * účinky léků MeSH
- deoxyribonukleasy * metabolismus MeSH
- hyfy MeSH
- kandidóza mikrobiologie MeSH
- lidé MeSH
- Staphylococcus epidermidis účinky léků MeSH
- vodní organismy * enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- antibakteriální látky terapeutické užití MeSH
- Candida albicans izolace a purifikace patogenita účinky léků MeSH
- dermatologie MeSH
- epidermolysis bullosa * diagnóza etiologie terapie MeSH
- fatální výsledek MeSH
- genetické nemoci vrozené MeSH
- genetické testování MeSH
- klinický obraz nemoci * MeSH
- kojenec MeSH
- komorbidita MeSH
- lidé MeSH
- multiorgánové selhání MeSH
- parenterální výživa metody využití MeSH
- prognóza * MeSH
- Pseudomonas aeruginosa izolace a purifikace patogenita účinky léků MeSH
- sepse MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
- MeSH
- antiinfekční látky farmakologie MeSH
- Arcobacter účinky léků MeSH
- buňky A549 MeSH
- Candida albicans účinky léků MeSH
- destilace MeSH
- levandule chemie MeSH
- lidé MeSH
- nádory plic farmakoterapie MeSH
- oleje prchavé farmakologie MeSH
- oleje rostlin farmakologie MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.
- MeSH
- acetyltransferasy nedostatek genetika fyziologie MeSH
- antifungální látky farmakologie MeSH
- buněčná adheze MeSH
- buněčná stěna účinky léků MeSH
- buněčný cyklus MeSH
- Candida albicans účinky léků genetika patogenita fyziologie MeSH
- chitinasy farmakologie MeSH
- CRISPR-Cas systémy MeSH
- delece genu MeSH
- endo-1,3-beta-glukanasa farmakologie MeSH
- faktory asociované s proteinem vázajícím TATA box nedostatek genetika fyziologie MeSH
- fungální proteiny genetika fyziologie MeSH
- geny hub * MeSH
- hyfy růst a vývoj MeSH
- isocitrátdehydrogenasa nedostatek genetika fyziologie MeSH
- kationty farmakologie MeSH
- nepohlavní rozmnožování MeSH
- otevřené čtecí rámce MeSH
- poškození DNA MeSH
- vápník fyziologie MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed. Many natural active molecules that exhibit various biological activities have been isolated from the nature. For the present research, a new selected set of aminobenzoquinones, denoted as plastoquinone analogs (PQ1-24), was employed for their in vitro antimicrobial potential in a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungi. The results revealed PQ analogs with specific activity against bacteria including Staphylococcus epidermidis and pathogenic fungi, including Candida albicans. PQ8 containing methoxy group at the ortho position on the phenylamino moiety exhibited the highest growth inhibition against S. epidermidis with a minimum inhibitory concentration of 9.76 μg/mL. The antifungal profile of all PQ analogs indicated that five analogs (while PQ1, PQ8, PQ9, PQ11, and PQ18 were effective against Candida albicans, PQ1 and PQ18 were effective against Candida tropicalis) have potent antifungal activity. Selected analogs, PQ1 and PQ18, were studied for biofilm evaluation and time-kill kinetic study for better understanding.
- MeSH
- antiinfekční látky chemie farmakologie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- Candida albicans účinky léků růst a vývoj MeSH
- halogenace MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- plastochinon analogy a deriváty chemie farmakologie MeSH
- Staphylococcus epidermidis účinky léků růst a vývoj MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH