Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.
- MeSH
- aktivace lymfocytů imunologie MeSH
- buněčná diferenciace imunologie MeSH
- forkhead transkripční faktory genetika MeSH
- genom genetika MeSH
- kur domácí genetika imunologie MeSH
- receptor interleukinu-2 - alfa-podjednotka metabolismus MeSH
- regulační T-lymfocyty imunologie MeSH
- sekvence aminokyselin genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- sekvenční seřazení MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 μg·kg-1 in group B, E and at 50 μg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.
- MeSH
- apoptóza MeSH
- chondrocyty fyziologie MeSH
- erytrocyty fyziologie MeSH
- glutathiontransferasa genetika metabolismus MeSH
- kur domácí imunologie MeSH
- nemoci drůbeže imunologie MeSH
- osteochondrodysplazie imunologie MeSH
- přirozená imunita MeSH
- ptačí proteiny genetika metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- signální transdukce genetika MeSH
- thiram metabolismus MeSH
- toll-like receptory metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Eggshell colour, quality, and biosafety of table eggs are of significant commercial interest. To date, there have been few studies investigating the relationship between eggshell pigmentation and internal egg quality in commercially bred birds. Moreover, the genetic basis and mechanisms behind the effects of extrinsic factors on deposition of antimicrobial compounds in egg white and eggshell pigments are not fully understood. In the present study, we evaluate the effect of chicken breed identity, eggshell pigmentation and the role of extrinsic factors (year and breeder identity) on variability in the concentrations of 2 major egg white antimicrobial proteins (AMPs), lysozyme (LSM), and ovotransferrin (OVOTR), across 23 traditional chicken breeds. We found that chicken breed identity and eggshell pigmentation explained most variability in the concentration of egg white LSM and OVOTR. Year and breeder identity were also significant predictors of egg white LSM and OVOTR variability, and showed selective effects on the deposition of both AMPs in egg white. We also documented a positive correlation between concentration of egg white LSM and eggshell cuticle protoporphyrin in tinted and dark brown eggs, but not in brown, white, and blue eggs. We assume that a combination of both intrinsic genetic and hormonally regulated extrinsic factors is responsible for this relationship and for the variability in egg white AMPs. In this study, we demonstrate the existence of a relationship between eggshell pigmentation and egg white AMPs content in the eggs of traditional chicken breeds that may advertise the egg's antimicrobial potential and biosafety. These findings provide novel insights into the relationship between eggshell pigmentation and egg internal quality and may stimulate the recovery and exploitation of traditional chicken breeds for egg production, where the demands for egg quality and biosafety, in conjunction with animal welfare, are a priority.
- MeSH
- imunomodulace genetika MeSH
- kationické antimikrobiální peptidy genetika metabolismus MeSH
- kur domácí genetika imunologie metabolismus MeSH
- pigmentace MeSH
- ptačí proteiny genetika metabolismus MeSH
- vaječná skořápka chemie MeSH
- vaječné proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
- MeSH
- biologické markery metabolismus MeSH
- C-reaktivní protein genetika imunologie metabolismus MeSH
- Escherichia coli fyziologie MeSH
- infekce vyvolané Escherichia coli diagnóza MeSH
- kultivované buňky MeSH
- kur domácí imunologie MeSH
- lidé MeSH
- nemoci ptáků diagnóza MeSH
- proteiny akutní fáze genetika imunologie metabolismus MeSH
- ptačí proteiny genetika imunologie metabolismus MeSH
- sekvenční seřazení MeSH
- sérový amyloidový protein genetika imunologie metabolismus MeSH
- upregulace MeSH
- zánět diagnóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Events occurring in the chicken caecum following Salmonella Enteritidis infection are relatively well-described. However, mechanisms of the immune response and defence beyond the intestinal tract are less well-described. In this study, we therefore determined changes in protein abundance in the liver and blood serum in response to S. Enteritidis infection using the unbiased approach of shotgun proteomics. Complement and coagulation cascades, TNF signalling, antigen processing and presentation was activated in the liver following infection with S. Enteritidis. Chicken proteins that decreased in the liver were involved in glycolysis, the citrate cycle, oxidative phosphorylation and fatty acid metabolism. No functional category was significantly activated or suppressed in the serum. Concerning individual proteins, VNN1, SAA, AVD, SERPINA3, SERPINB10, AGT, MRP126 or CP increased in abundance both in the liver and serum. MT4, MT3, PTGDS, GLRX and TGM4, though highly inducible in the liver, did not increase in the serum. PIGR, SERPINF2 and IGJ increased in the serum but not in the liver. SERPINA4, apoAIV, CLEC3B, SERPINF1, HRG, AHSG and ALB decreased both in the liver and serum. Avidin-like LOC431660, THRSP, GATM, GGACT, ACOX1, ALDOB or FABP7 decreased in the liver but not in the serum. Finally, CKM, CKB, PLTP, COMP, IGFALS, AMY1A or SERPIND1 decreased in the serum after S. Enteritidis infection but not in the liver. Differently abundant proteins characterise the chicken's response to infection and can be also used as markers of chicken health status.
- MeSH
- cékum imunologie MeSH
- játra imunologie metabolismus mikrobiologie MeSH
- kur domácí krev imunologie MeSH
- nemoci drůbeže imunologie mikrobiologie MeSH
- prezentace antigenu MeSH
- proteiny akutní fáze analýza MeSH
- proteomika * MeSH
- Salmonella enteritidis MeSH
- salmonelová infekce u zvířat krev imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lymphocytes represent the key antigen-specific leukocyte subpopulation. Despite their importance in mounting an immune response, an unbiased description of proteins expressed by chicken lymphocytes has not been presented. In this study, we therefore intravenously infected chickens with Salmonella Enteritidis, sorted CD4, CD8 and γδ T-lymphocytes from the spleen by flow cytometry and determined the proteome of each population by LC-MS/MS. CD4 T-lymphocyte characteristic proteins included ubiquitin SUMO-like domain and BAR domain containing proteins. CD8 T-lymphocyte specific proteins were characterized by purine ribonucleoside triphosphate binding and were involved in cell differentiation, cell activation and regulation of programmed cell death. γδ T-lymphocyte specific proteins exhibited enrichment of small GTPase of Rab type and GTP binding. Following infection, inducible proteins in CD4 lymphocytes included ribosomal proteins and downregulated proteins localized to the lysosome. CD8 T-lymphocytes induced MCM complex proteins, proteins required for DNA replication and machinery for protein processing in the endoplasmic reticulum. Proteins inducible in γδ T-lymphocytes belonged to immune system response, oxidative phosphorylation and the spliceosome. In this study, we predicted the likely events in lymphocyte response to systemic bacterial infection and identified proteins which can be used as markers specific for each lymphocyte subpopulation.
- MeSH
- CD4-pozitivní T-lymfocyty imunologie metabolismus mikrobiologie MeSH
- CD8-pozitivní T-lymfocyty imunologie metabolismus mikrobiologie MeSH
- intraepiteliální lymfocyty imunologie metabolismus mikrobiologie MeSH
- kur domácí imunologie metabolismus MeSH
- nemoci drůbeže imunologie metabolismus mikrobiologie prevence a kontrola MeSH
- Salmonella enteritidis imunologie metabolismus MeSH
- salmonelové vakcíny imunologie MeSH
- salmonelóza imunologie metabolismus mikrobiologie prevence a kontrola MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
While haematological variation is well known in birds, variation in avian breeds (distinct morphotypes of the same species) remains unexplored. Poultry breeds, in particular, may show interesting evolutionary patterns and economically-relevant physiological differences. We performed a comparative examination of blood cellular composition in five chicken (Gallus gallus domesticus) breeds: Araucana, Booted bantam, Czech, Minorca and Rosecomb bantam. In standard-environment-reared hens whole-blood flow cytometry revealed remarkable differences in most erythrocyte- and leukocyte-related parameters. We identified two extremes: Czech, a European breed, with a low heterophil/lymphocyte (H/L) ratio and high CD4+ levels, and Araucana, a South-American breed, with a high H/L ratio and high relative monocyte count. Such variation may reflect a combination of artificial and natural selection acting on health- and stress-related traits in domestic populations. Different breeds have evolved different immunological adaptations reflecting their original need to fight pathogens and physiological constraint resulting from dissimilar physiological trade-offs.
Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.
- MeSH
- antigeny virové imunologie MeSH
- buněčná imunita imunologie MeSH
- CD antigeny imunologie MeSH
- cytokiny fyziologie MeSH
- dendritické buňky imunologie virologie MeSH
- kur domácí imunologie virologie MeSH
- lektiny typu C imunologie MeSH
- protilátky bispecifické imunologie MeSH
- ptačí sarkom imunologie prevence a kontrola MeSH
- receptory buněčného povrchu imunologie MeSH
- vedlejší histokompatibilní antigeny imunologie MeSH
- virové vakcíny imunologie MeSH
- virus Rousova sarkomu imunologie MeSH
- zvířata kongenní imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The colonization of poultry with different Salmonella enterica serovars poses an issue throughout the world. In this study we therefore tested the efficacy of a vaccine consisting of attenuated strains of Salmonella enterica serovars Enteritidis, Typhimurium and Infantis against challenge with the same serovars and with S. Agona, Dublin and Hadar. We tested oral and aerosol administration of the vaccine, with or without co-administration of cecal microbiota from adult hens. The protective effect was determined by bacterial counts of the challenge strains up to week 18 of life and by characterizing the immune response using real-time PCR specific for 16 different genes. We have shown that a vaccine consisting of attenuated S. Enteritidis, S. Typhimurium and S. Infantis protected chickens against challenge with the wild type strains of the same serovars and partially protected chickens also against challenge with isolates belonging to serovars Dublin or Hadar. Aerosol vaccination was more effective at inducing systemic immunity whilst oral vaccination stimulated a local immune response in the gut. Co-administration of cecal microbiota increased the protectiveness in the intestinal tract but slightly decreased the systemic immune response. Adjusting the vaccine composition and changing the administration route therefore affects vaccine efficacy.
- MeSH
- atenuované vakcíny terapeutické užití MeSH
- kombinované vakcíny terapeutické užití MeSH
- kur domácí imunologie mikrobiologie MeSH
- nemoci drůbeže imunologie prevence a kontrola MeSH
- Salmonella enteritidis imunologie MeSH
- Salmonella typhimurium imunologie MeSH
- Salmonella imunologie MeSH
- salmonelová infekce u zvířat imunologie mikrobiologie prevence a kontrola MeSH
- salmonelové vakcíny imunologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Campylobacter jejuni (C. jejuni)-host-interaction may be affected by the maturation stage of the chicken's immune system and the developing gut microbiota composition. We compared these parameters between birds C. jejuni-inoculated at day one, 10, 22 and 31 post hatch. The highest C. jejuni-colonization rate and numbers of colony forming units (CFU) were detected in caecal content of day-one-inoculated birds while the lowest was detected in 22-days-old birds. The low bacterial colonization of 22-days-old chickens correlated with the most prominent immune reactions in this age group in comparison to other age groups. Age and C. jejuni-inoculation had a significant effect on lymphocyte numbers and cytokine expression levels in caecum as well as on gut flora composition. Overall, the immune response to C. jejuni is significantly influenced by the age of the infected chickens leading to differences in C. jejuni-colonization pattern between age goups.
- MeSH
- Campylobacter jejuni imunologie MeSH
- cékum imunologie MeSH
- cytokiny metabolismus MeSH
- interakce hostitele a patogenu MeSH
- kampylobakterové infekce imunologie MeSH
- kultivované buňky MeSH
- kur domácí imunologie MeSH
- lymfocyty imunologie MeSH
- nemoci ptáků imunologie MeSH
- stárnutí imunologie MeSH
- střevní mikroflóra imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH