The alveolar-capillary interface is the key functional element of gas exchange in the human lung, and disruptions to this interface can lead to significant medical complications. However, it is currently challenging to adequately model this interface in vitro, as it requires not only the co-culture of human alveolar epithelial and endothelial cells but mainly the preparation of a biocompatible scaffold that mimics the basement membrane. This scaffold should support cell seeding from both sides, and maintain optimal cell adhesion, growth, and differentiation conditions. Our study investigates the use of polycaprolactone (PCL) nanofibers as a versatile substrate for such cell cultures, aiming to model the alveolar-capillary interface more accurately. We optimized nanofiber production parameters, utilized polyamide mesh UHELON as a mechanical support for scaffold handling, and created 3D-printed inserts for specialized co-cultures. Our findings confirm that PCL nanofibrous scaffolds are manageable and support the co-culture of diverse cell types, effectively enabling cell attachment, proliferation, and differentiation. Our research establishes a proof-of-concept model for the alveolar-capillary interface, offering significant potential for enhancing cell-based testing and advancing tissue-engineering applications that require specific nanofibrous matrices.
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
- MeSH
- biokompatibilní materiály chemie MeSH
- lékové transportní systémy * metody MeSH
- lidé MeSH
- polymery * chemie MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- vstřebatelné implantáty MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
- MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky * cytologie účinky léků metabolismus MeSH
- nervové kmenové buňky * cytologie účinky léků metabolismus MeSH
- pevnost v tahu MeSH
- polyestery * chemie farmakologie MeSH
- polyurethany * chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- testování materiálů MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- viabilita buněk účinky léků MeSH
- želatina * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
V zájmu řešení klinických problémů je podporována mezioborová spolupráce mezi různými chirurgickými obory. Ačkoli se někteří zdravotníci mohou ve své praxi setkat s kožními náhradami jen zřídka, pochopení jejich vlastností a použití je pro poskytování optimální péče o pacienty zásadní. Cílem tohoto přehledu je poskytnout zdravotnickým pracovníkům základní informace o kožních náhradách a krytech, které usnadní jejich efektivní použití v různých klinických scénářích a optimalizují výsledky léčby pacientů. Rychlost pokroku v tkáňovém inženýrství a regenerativní medicíně je pozoruhodná díky společnému úsilí mezi vědci, inženýry a klinickými lékaři. Technologický pokrok, zvýšené financování a hlubší porozumění buněčným a molekulárním procesům urychlily výzkum a vývoj. Výzvy, jako je dosažení vaskularizace v upravených tkáních, řešení imunitních reakcí a zajištění dlouhodobé funkčnosti regenerovaných orgánů, však přetrvávají. Navzdory těmto překážkám se obor nadále rychle vyvíjí a nabízí naději na transformativní lékařská řešení, která mohou v blízké budoucnosti nově definovat léčebné prostředí. V tomto článku uvádíme přehled vybraných současných komerčně dostupných epidermálních, dermálních a dermo-epidermálních kožních náhrad pro hojení ran.
Skin substitutes and covers are crucial across surgical disciplines, promoting interdisciplinary collaboration to meet varied clinical needs. While some medical professionals may encounter these products infrequently in their practice, understanding their properties and applications is paramount to provide optimal patient care. In this overview, we aim to provide healthcare professionals with essential information regarding skin substitutes and covers, equipping them with knowledge to navigate their use effectively across different clinical scenarios and to optimize patient outcomes. The speed of progress in tissue engineering and regenerative medicine is notable, driven by collaborative efforts among scientists, engineers, and clinicians. Technological advancements, increased funding, and a deeper understanding of cellular and molecular processes have accelerated research and development. However, challenges remain, such as achieving vascularization in engineered tissues, addressing immune responses, and ensuring long-term functionality of regenerated organs. Despite these hurdles, the field continues to evolve rapidly, offering hope for transformative medical solutions that may redefine the treatment landscape soon. In this article, we review the current selected commercially available epidermal, dermal, and total skin substitutes for wound healing.
- MeSH
- biologické krytí klasifikace MeSH
- hojení ran MeSH
- lidé MeSH
- rány a poranění terapie MeSH
- tkáňové inženýrství metody MeSH
- umělá kůže * klasifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
- MeSH
- 3D tisk MeSH
- bioprinting metody MeSH
- buněčné kultury MeSH
- hydrogely * chemie MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- techniky 3D buněčné kultury metody MeSH
- tkáňové inženýrství * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lately, the need for three-dimensional (3D) cell culture has been recognized in order to closely mimic the organization of native tissues. Thus, 3D scaffolds started to be employed to facilitate the 3D cell organization and enable the artificial tissue formation for the emerging tissue engineering applications. 3D scaffolds can be prepared by various techniques, each with certain advantages and disadvantages. Decellularization is an easy method based on removal of cells from native tissue sample, yielding extracellular matrix (ECM) scaffold with preserved architecture and bioactivity. This chapter provides a detailed protocol for decellularization of pig lung and also some basic assays for evaluation of its effectivity, such as determination of DNA content and histological verification of the selected ECM components. Such decellularized scaffold can subsequently be used for various tissue engineering applications, for example, for recellularization with cells of interest, for natural ECM hydrogel preparation, or as a bioink for 3D bioprinting.
- MeSH
- extracelulární matrix MeSH
- hydrogely MeSH
- plíce * MeSH
- prasata MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
- MeSH
- biokompatibilní materiály farmakologie MeSH
- buněčná diferenciace MeSH
- kosti a kostní tkáň * MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty MeSH
- osteogeneze MeSH
- proliferace buněk MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The rapid development of tissue engineering (TE) and regenerative medicine brings an acute need for biocompatible and bioactive biological scaffolds to regenerate or restore damaged tissue. Great attention is focused on the decellularization of tissues or even whole organs, and the subsequent colonization of such decellularized extracellular matrices by recipient cells. The foreskin is an integral, normal part of the external genitalia that forms the anatomical covering of the glans penis and the urinary meatus of all human and non-human primates. It is mucocutaneous tissue that marks the boundary between mucosa and skin. In this work, we compared two innovative decellularization techniques for human foreskins obtained from donors. We compared the efficacy and feasibility of these protocols and the biosafety of prepared acellular dermal matrixes that can serve as a suitable scaffold for TE. The present study confirms the feasibility of foreskin decellularization based on enzymatic or detergent methods. Both techniques conserved the ultrastructure and composition of natural ECM while being DNA-free and non-toxic, making it an excellent scaffold for follow-up research and TE applications.
- MeSH
- extracelulární matrix MeSH
- lidé MeSH
- předkožka * MeSH
- regenerativní lékařství metody MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH