12774513 OR Gamma-tubulins and their functions Dotaz Zobrazit nápovědu
Highly conserved α- and β-tubulin heterodimers assemble into dynamic microtubules and perform multiple important cellular functions such as structural support, pathway for transport and force generation in cell division. Tubulin exists in different forms of isotypes expressed by specific genes with spatially- and temporally-regulated expression levels. Some tubulin isotypes are differentially expressed in normal and neoplastic cells, providing a basis for cancer chemotherapy drug development. Moreover, specific tubulin isotypes are overexpressed and localized in the nuclei of cancer cells and/or show bioenergetic functions through the regulation of the permeability of mitochondrial ion channels. It has also become clear that tubulin isotypes are involved in multiple cellular functions without being incorporated into microtubule structures. Understanding the mutations of tubulin isotypes specifically expressed in tumors and their post-translational modifications might help to identify precise molecular targets for the design of novel anti-microtubular drugs. Knowledge of tubulin mutations present in tubulinopathies brings into focus cellular functions of tubulin in brain pathologies such as Alzheimer's disease. Uncovering signaling pathways which affect tubulin functions during antigen-mediated activation of mast cells presents a major challenge in developing new strategies for the treatment of inflammatory and allergic diseases. γ-tubulin, a conserved member of the eukaryotic tubulin superfamily specialized for microtubule nucleation is a target of cell cycle and stress signaling. Besides its microtubule nucleation role, γ-tubulin functions in nuclear and cell cycle related processes. This special issue "Tubulin: Structure, Functions and Roles in Disease" contains eight articles, five of which are original research papers and three are review papers that cover diverse areas of tubulin biology and functions under normal and pathological conditions.
- MeSH
- Alzheimerova nemoc genetika metabolismus patologie MeSH
- lidé MeSH
- mikrotubuly genetika metabolismus patologie MeSH
- mutace MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádory genetika metabolismus MeSH
- protein - isoformy MeSH
- tubulin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodní články MeSH
- úvodníky MeSH
Higher plants represent a large group of eukaryotes where centrosomes are absent. The functions of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs) in metazoans and fungi in microtubule nucleation are well established and the majority of components found in the complexes are present in plants. However, plant microtubules are also nucleated in a γ-tubulin-dependent but γ-TuRC-independent manner. There is growing evidence that γ-tubulin is a microtubule nucleator without being complexed in γ-TuRC. Fibrillar arrays of γ-tubulin were demonstrated in plant and animal cells and the ability of γ-tubulin to assemble into linear oligomers/polymers was confirmed in vitro for both native and recombinant γ-tubulin. The functions of γ-tubulin as a template for microtubule nucleation or in promoting spontaneous nucleation is outlined. Higher plants represent an excellent model for studies on the role of γ-tubulin in nucleation due to their acentrosomal nature and high abundancy and conservation of γ-tubulin including its intrinsic ability to assemble filaments. The defining scaffolding or sequestration functions of plant γ-tubulin in microtubule organization or in nuclear processes will help our understanding of its cellular roles in eukaryotes.
- MeSH
- buňky metabolismus MeSH
- centrozom metabolismus MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- sekvence aminokyselin MeSH
- tubulin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Microtubules represent cytoplasmic structures that are indispensable for the maintenance of cell morphology and motility generation. Due to their regular structural organization, microtubules have become of great interest for preparation of in vitro nanotransport systems. However, tubulin, the major building protein of microtubules, is a thermolabile protein and is usually stored at -80 degrees C to preserve its conformation and polymerization properties. Here we describe a novel method for freeze-drying of assembly-competent tubulin in the presence of a nonreducing sugar trehalose. Even after prolonged storage at ambient temperature, rehydrated tubulin is capable of binding antimitotic drugs and assembling to microtubules that bind microtubule-associated proteins in the usual way. Electron microscopy confirmed that rehydrated tubulin assembles into normal microtubules that are able to generate motility by interaction with the motor protein kinesin in a cell-free environment. Freeze-drying also preserved preformed microtubules. Rehydrated tubulin and microtubules can be used for preparation of diverse in vitro and in vivo assays as well as for preparation of bionanodevices. Copyright 2009 Elsevier Inc. All rights reserved.
The molecular mechanisms controlling microtubule formation in cells with non-centrosomal microtubular arrays are not yet fully understood. The key component of microtubule nucleation is gamma-tubulin. Although previous results suggested that tyrosine kinases might serve as regulators of gamma-tubulin function, their exact roles remain enigmatic. In the present study, we show that a pool of gamma-tubulin associates with detergent-resistant membranes in differentiating P19 embryonal carcinoma cells, which exhibit elevated expression of the Src family kinase Fyn (protein tyrosine kinase p59(Fyn)). Microtubule-assembly assays demonstrated that membrane-associated gamma-tubulin complexes are capable of initiating the formation of microtubules. Pretreatment of the cells with Src family kinase inhibitors or wortmannin blocked the nucleation activity of the gamma-tubulin complexes. Immunoprecipitation experiments revealed that membrane-associated gamma-tubulin forms complexes with Fyn and PI3K (phosphoinositide 3-kinase). Furthermore, in vitro kinase assays showed that p85alpha (regulatory p85alpha subunit of PI3K) serves as a Fyn substrate. Direct interaction of gamma-tubulin with the C-terminal Src homology 2 domain of p85alpha was determined by pull-down experiments and immunoprecipitation experiments with cells expressing truncated forms of p85alpha. The combined results suggest that Fyn and PI3K might take part in the modulation of membrane-associated gamma-tubulin activities.
- MeSH
- buněčná membrána metabolismus MeSH
- buněčné linie MeSH
- fosfatidylinositol-3-kinasy genetika metabolismus MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- podjednotky proteinů genetika metabolismus MeSH
- protoonkogenní proteiny c-fyn genetika metabolismus MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- tubulin genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Tardigrades are microscopic ecdysozoans that can withstand extreme environmental conditions. Several tardigrade species undergo reversible morphological transformations and enter into cryptobiosis, which helps them to survive periods of unfavorable environmental conditions. However, the underlying molecular mechanisms of cryptobiosis are mostly unknown. Tubulins are evolutionarily conserved components of the microtubule cytoskeleton that are crucial in many cellular processes. We hypothesize that microtubules are necessary for the morphological changes associated with successful cryptobiosis. The molecular composition of the microtubule cytoskeleton in tardigrades is unknown. Therefore, we analyzed and characterized tardigrade tubulins and identified 79 tardigrade tubulin sequences in eight taxa. We found three α-, seven β-, one γ-, and one ε-tubulin isoform. To verify in silico identified tardigrade tubulins, we also isolated and sequenced nine out of ten predicted Hypsibius exemplaris tubulins. All tardigrade tubulins were localized as expected when overexpressed in mammalian cultured cells: to the microtubules or to the centrosomes. The presence of a functional ε-tubulin, clearly localized to centrioles, is attractive from a phylogenetic point of view. Although the phylogenetically close Nematoda lost their δ- and ε-tubulins, some groups of Arthropoda still possess them. Thus, our data support the current placement of tardigrades into the Panarthropoda clade.
- MeSH
- fylogeneze * MeSH
- Tardigrada * klasifikace MeSH
- tubulin genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
γ-Tubulins are highly conserved members of the tubulin superfamily essential for microtubule nucleation. Humans possess 2 γ-tubulin genes. It is thought that γ-tubulin-1 represents a ubiquitous isotype, whereas γ-tubulin-2 is found predominantly in the brain, where it may be endowed with divergent functions beyond microtubule nucleation. The molecular basis of the purported functional differences between γ-tubulins is unknown. We report discrimination of human γ-tubulins according to their electrophoretic and immunochemical properties. In vitro mutagenesis revealed that the differences in electrophoretic mobility originate in the C-terminal regions of the γ-tubulins. Using epitope mapping, we discovered mouse monoclonal antibodies that can discriminate between human γ-tubulin isotypes. Real time quantitative RT-PCR and 2-dimensional-PAGE showed that γ-tubulin-1 is the dominant isotype in fetal neurons. Although γ-tubulin-2 accumulates in the adult brain, γ-tubulin-1 remains the major isotype in various brain regions. Localization of γ-tubulin-1 in mature neurons was confirmed by immunohistochemistry and immunofluorescence microscopy on clinical samples and tissue microarrays. Differentiation of SH-SY5Y human neuroblastoma cells by all-trans retinoic acid, or oxidative stress induced by mitochondrial inhibitors, resulted in upregulation of γ-tubulin-2, whereas the expression of γ-tubulin-1 was unchanged. Fractionation experiments and immunoelectron microscopy revealed an association of γ-tubulins with mitochondrial membranes. These data indicate that in the face of predominant γ-tubulin-1 expression, the accumulation of γ-tubulin-2 in mature neurons and neuroblastoma cells during oxidative stress may denote a prosurvival role of γ-tubulin-2 in neurons.-Dráberová, E., Sulimenko, V., Vinopal, S., Sulimenko, T., Sládková, V., D'Agostino, L., Sobol, M., Hozák, P., Křen, L., Katsetos, C. D., Dráber, P. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to γ-tubulin-2 prosurvival function.
- MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- neuroblastom metabolismus MeSH
- neurogeneze fyziologie MeSH
- neurony metabolismus MeSH
- oxidační stres fyziologie MeSH
- tubulin metabolismus MeSH
- vývojová regulace genové exprese fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microtubules, polymers of the heterodimeric protein αβ-tubulin, are indispensable for many cellular activities such as maintenance of cell shape, division, migration, and ordered vesicle transport. In vitro assays to study microtubule functions and their regulation by associated proteins require the availability of assembly-competent purified tubulin. However, tubulin is a thermolabile protein that rapidly converts into non-polymerizing state. For this reason it is usually stored at -80 °C to preserve its conformation and polymerization properties. In this chapter we describe a method for freeze-drying of assembly-competent tubulin in the presence of nonreducing sugar trehalose and methods enabling evaluation of tubulin functions in rehydrated samples.
- MeSH
- lyofilizace * MeSH
- proteiny chemie MeSH
- trehalosa chemie MeSH
- tubulin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microtubules, polymers of the heterodimeric protein αβ-tubulin, are indispensable for many cellular activities such as maintenance of cell shape, division, migration, and ordered vesicle transport. In vitro assays to study microtubule functions and their regulation by associated proteins require the availability of assembly-competent purified tubulin. However, tubulin is a thermolabile protein that rapidly converts into a nonpolymerizing state. For this reason, it is usually stored at -80 °C or liquid nitrogen to preserve its conformation and polymerization properties. In this chapter, we describe a method for freeze-drying of assembly-competent tubulin in the presence of nonreducing sugar trehalose, and methods enabling the evaluation of tubulin functions in rehydrated samples.
- MeSH
- lidé MeSH
- lyofilizace MeSH
- stabilita proteinů MeSH
- trehalosa chemie MeSH
- tubulin chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.
- MeSH
- aktiny metabolismus MeSH
- Apicomplexa růst a vývoj fyziologie ultrastruktura MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- mikrotubuly metabolismus MeSH
- paraziti MeSH
- protozoální proteiny metabolismus MeSH
- tomografie elektronová MeSH
- trofozoiti růst a vývoj metabolismus ultrastruktura MeSH
- tubulin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH