With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
- MeSH
- Bacteria * metabolismus účinky léků MeSH
- biodegradace * MeSH
- Eukaryota metabolismus účinky léků MeSH
- houby metabolismus MeSH
- kadmium * metabolismus toxicita MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo * metabolismus toxicita MeSH
- rostliny mikrobiologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Azo dyes are used as coloring agent in textile industries at larger scale. As a result, large quantity of dye-enriched waste water is generated which subsequently poses environmental problems. Biological tool involving bacteria having azoreductase enzyme has proved to be more effective and efficient in dye effluent treatment. Current work focuses on Staphylococcus caprae (S. caprae) for degradation and decolorization of Reactive Red-195 (RR-195) azo dye. For this purpose, factors such as pH, temperature, inoculums, carbon and nitrogen sources, and dye concentrations have been optimized for maximum decolorization and degradation. S. caprae (4 mg/mL) efficiently resulted into 90% decolorization of RR-195 dye under static condition at 100 μg/mL concentration, 30 °C and pH 7.0 at a 12-h contact period. FTIR analysis has revealed the formation of new functional groups in the treated dye such as O-H stretch at 3370 cm-1, C-H band stretching at 2928 cm-1, and new band at 1608 cm-1 which specify the degradation of aromatic ring, 1382 and 1118 cm-1 represents desulfonated peaks. Biodegraded metabolites of RR-195 dye such as phenol, 3, 5-di-tert-butylphenol, and phthalic acid have been identified respectively that find industrial applications. Phytotoxicity test has shown non-toxic effects of treated dye on germination of Vigna radiata and Triticum aestivum seeds. Further, antibiotic diffusion assay has confirmed the biosafety of S. caprae.
- MeSH
- azosloučeniny * metabolismus toxicita MeSH
- barvicí látky * metabolismus MeSH
- biodegradace * MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- dusík metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- odpadní voda * mikrobiologie chemie MeSH
- průmyslový odpad MeSH
- Staphylococcus capitis metabolismus izolace a purifikace MeSH
- Staphylococcus metabolismus MeSH
- teplota MeSH
- textilie MeSH
- textilní průmysl MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of the present study was to purify and characterize the catechol 1,2-dioxygenase (EC 1.13.11.1; catechol-oxygen 1,2-oxidoreductase; C12O) enzyme from the local isolate of Pseudomonas putida. This enzyme catalyzes the initial reaction in the ortho-pathway for phenol degradation in various gram-negative bacteria, including the genus of Pseudomonas. Pseudomonads are commonly used in the biodegradation of xenobiotics due to their versatility in degrading a wide range of chemical compounds. Eighty-nine soil samples were taken from the contaminated soil of the Midland Refineries Company (MRC) of Al-Daura refinery area at Baghdad from April to August 2021. The samples were grown in a mineral salt medium containing 250 mg per L of phenol to test their ability to biodegrade phenol. The pH was adjusted to 8.0 at 30 °C using a shaking incubator for 24-48 h. A number of 62 (69.6%) isolates of the total number were able to degrade phenol efficiently. The findings of the VITEK system and the housekeeping gene 16S rDNA confirmed that out of the positive isolates for phenol degradation, 36 from 62 (58.06%) were identified as Pseudomonas spp. isolates. Those isolates were distributed as P. aeruginosa 30 (83.3%) and P. putida 6 (16.6%). The enzyme production capabilities of the isolates were evaluated, and the highest activity was 2.39 U per mg for the isolate No. 15 which it was identified as P. putida. The previous isolate was selected for enzyme production, purification, and characterization. The enzyme was purified using ion exchange and gel filtration chromatography, with a combined yield of 36.12% and purification fold of 15.42 folds. Using a gel filtration column, the enzyme's molar mass was calculated to be 69 kDa after purification. The purified enzyme was stable at 35 °C and a pH of 6.0.
- MeSH
- bakteriální proteiny metabolismus genetika chemie izolace a purifikace MeSH
- biodegradace * MeSH
- fenol * metabolismus MeSH
- fylogeneze MeSH
- katechol-1,2-dioxygenasa * metabolismus genetika MeSH
- koncentrace vodíkových iontů MeSH
- Pseudomonas putida * enzymologie genetika metabolismus MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
- MeSH
- biodegradace MeSH
- dřevěné a živočišné uhlí MeSH
- fluoreny MeSH
- Gammaproteobacteria * MeSH
- látky znečišťující půdu * analýza MeSH
- lidé MeSH
- mikrobiota * genetika MeSH
- polycyklické aromatické uhlovodíky * metabolismus MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- těžké kovy * MeSH
- uhlovodíky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.
Solanum viarum, a perennial shrub, belongs to the family Solanaceae known for its therapeutic value worldwide. As a beneficial remedial plant, it is used for treating several disorders like dysentery, diabetes, inflammation, and respiratory disorders. Phytochemistry studies of this plant have shown the presence of steroidal glycoside alkaloids, including solasonine, solasodine, and solamargine. It also has flavonoids, saponins, minerals, and other substances. S. viarum extracts and compounds possess a variety of pharmacological effects, including antipyretic, antioxidant, antibacterial, insecticidal, analgesic, and anticancer activity. Most of the heavy metals accumulate in the aerial sections of the plant which is considered a potential phytoremediation, a highly effective method for the treatment of metal-polluted soils. We emphasize the forgoing outline of S. viarum, as well as its ethnomedicinal and ethnopharmacological applications, the chemistry of its secondary metabolites, and heavy metal toxicity. In addition to describing the antitumor activity of compounds and their mechanisms of action isolated from S. viarum, liabilities are also explained and illustrated, including any significant chemical or metabolic stability and toxicity risks. A comprehensive list of information was compiled from Science Direct, PubMed, Google Scholar, and Web of Science using different key phrases (traditional use, ethnomedicinal plants, western Himalaya, Himachal Pradesh, S viarum, and biological activity). According to the findings of this study, we hope that this review will inspire further studies along the drug discovery pathway of the chemicals extracted from the plant of S. viarum. Further, this review shows that ethnopharmacological information from ethnomedicinal plants can be a promising approach to drug discovery for cancer and diabetes.
- MeSH
- biodegradace * MeSH
- etnofarmakologie * MeSH
- fytonutrienty farmakologie izolace a purifikace MeSH
- fytoterapie MeSH
- lidé MeSH
- rostlinné extrakty * farmakologie chemie izolace a purifikace MeSH
- Solanum * chemie MeSH
- tradiční lékařství * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Decolorization and degradation of textile dye by endophytic fungi stand to be a profitable and viable alternative over conventional methods with respect to eco-friendliness, cost-effectiveness, and non-hazardous nature. One of the active fungal endophytes Colletotrichum gloeosporioides isolated from plant Thevetia peruviana (Pers.) K. Schum. was screened for laccase production and Congo red dye decolorization. Various physicochemical parameters like dye concentration, carbon sources, nitrogen sources, temperature, and pH were optimized, and the maximum decolorization (%) was achieved at 100 mg/L of dye concentration (82%), yeast extract (80%), 30 °C temp (80%), glucose (79%), and 7 pH (78%), respectively. SEM image and fungal biomass changes represent that fungus actively participated in the dye decolorization and had less significant effect on biomass. The regenerative ability of fungus C. gloeosporioides after dye decolorization indicated tolerance against the dye and was found to be more advantageous over previous reports of dye decolorization by other endophytic fungi. UV-Vis spectra, TLC, FTIR, and HPLC results confirmed the decolorization and degradation process due to absorption and biodegradation. Phytotoxicity assay depicted that degraded products are less toxic to Phaseolus mungo compared to Congo red. The overall findings showed that C. gloeosporioides possesses a good decolorization and degradation potential against Congo red and this endophyte can be profitably used for dye-containing wastewater treatment.
In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- mikrořasy * metabolismus MeSH
- odpadní voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During production of γ-hexachlorocyclohexane (γ-HCH), thousands of tons of other isomers were synthesized as byproducts, and after dumping represent sources of contamination for the environment. Several microbes have the potential for aerobic and anaerobic degradation of HCHs, and zero-valent iron is an effective remediation agent for abiotic dechlorination of HCHs, whereas the combination of the processes has not yet been explored. In this study, a sequence of anoxic/oxic chemico-biological treatments for the degradation of HCHs in a real extremely contaminated soil (10-30 g/kg) was applied. Approximately 1500 kg of the soil was employed, and various combinations of reducing and oxygen-releasing chemicals were used for setting up the aerobic and anaerobic phases. The best results were obtained with mZVI/nZVI, grass cuttings, and oxygen-releasing compounds. In this case, 80 % removal of HCHs was achieved in 129 days, and 98 % degradation was achieved after 1106 days. The analysis of HCHs and their transformation products proved active degradation when slight accumulation of the transformation product during the anaerobic phase was followed by aerobic degradation. The results document that switching between aerobic and anaerobic phases, together with the addition of grass, also created suitable conditions for the biodegradation of HCHs and monochlorobenzene/benzene by microbes.