Aggregation of high-affinity IgE receptors (FcεRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcεRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.
Primary cilia are key regulators of embryo development and tissue homeostasis. However, their mechanisms and functions, particularly in the context of human cells, are still unclear. Here, we analyzed the consequences of primary cilia modulation for human pluripotent stem cells (hPSCs) proliferation and differentiation. We report that neither activation of the cilia-associated Hedgehog signaling pathway nor ablation of primary cilia by CRISPR gene editing to knockout Tau Tubulin Kinase 2 (TTBK2), a crucial ciliogenesis regulator, affects the self-renewal of hPSCs. Further, we show that TTBK1, a related kinase without previous links to ciliogenesis, is upregulated during hPSCs-derived neural rosette differentiation. Importantly, we demonstrate that while TTBK1 fails to localize to the mother centriole, it regulates primary cilia formation in the differentiated, but not the undifferentiated hPSCs. Finally, we show that TTBK1/2 and primary cilia are implicated in the regulation of the size of hPSCs-derived neural rosettes.
- MeSH
- centrioly metabolismus MeSH
- cilie metabolismus MeSH
- lidé MeSH
- pluripotentní kmenové buňky * metabolismus MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny hedgehog * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cortical projection neurons polarize and form an axon while migrating radially. Even though these dynamic processes are closely interwoven, they are regulated separately-the neurons terminate their migration when reaching their destination, the cortical plate, but continue to grow their axons. Here, we show that in rodents, the centrosome distinguishes these processes. Newly developed molecular tools modulating centrosomal microtubule nucleation combined with in vivo imaging uncovered that dysregulation of centrosomal microtubule nucleation abrogated radial migration without affecting axon formation. Tightly regulated centrosomal microtubule nucleation was required for periodic formation of the cytoplasmic dilation at the leading process, which is essential for radial migration. The microtubule nucleating factor γ-tubulin decreased at neuronal centrosomes during the migratory phase. As distinct microtubule networks drive neuronal polarization and radial migration, this provides insight into how neuronal migratory defects occur without largely affecting axonal tracts in human developmental cortical dysgeneses, caused by mutations in γ-tubulin.
- MeSH
- axony metabolismus MeSH
- centrozom MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- mozek metabolismus MeSH
- neurony * fyziologie MeSH
- tubulin * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.
- MeSH
- centrozom * metabolismus MeSH
- chemotaxe MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * metabolismus MeSH
- kontrolní body buněčného cyklu MeSH
- lidé MeSH
- mitóza MeSH
- organizační centrum mikrotubulů MeSH
- pohyb buněk MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- T-lymfocyty metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Profilin 1 is a crucial actin regulator, interacting with monomeric actin and several actin-binding proteins controlling actin polymerization. Recently, it has become evident that this profilin isoform associates with microtubules via formins and interferes with microtubule elongation at the cell periphery. Recruitment of microtubule-associated profilin upon extensive actin polymerizations, for example, at the cell edge, enhances microtubule growth, indicating that profilin contributes to the coordination of actin and microtubule organization. Here, we provide further evidence for the profilin-microtubule connection by demonstrating that it also functions in centrosomes where it impacts on microtubule nucleation.
- MeSH
- aktiny metabolismus MeSH
- Caco-2 buňky MeSH
- centrozom metabolismus MeSH
- forminy metabolismus MeSH
- genový knockout MeSH
- lidé MeSH
- melanom experimentální metabolismus patologie MeSH
- mikrofilamentové proteiny metabolismus MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádory kůže metabolismus patologie MeSH
- polymerizace MeSH
- profiliny genetika metabolismus MeSH
- signální transdukce genetika MeSH
- transfekce MeSH
- tubulin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
- MeSH
- centrozom metabolismus MeSH
- cilie * metabolismus patologie MeSH
- lidé MeSH
- nádorová transformace buněk patologie MeSH
- nádory * metabolismus patologie MeSH
- onkogenní fúze MeSH
- receptory fibroblastových růstových faktorů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Higher plants represent a large group of eukaryotes where centrosomes are absent. The functions of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs) in metazoans and fungi in microtubule nucleation are well established and the majority of components found in the complexes are present in plants. However, plant microtubules are also nucleated in a γ-tubulin-dependent but γ-TuRC-independent manner. There is growing evidence that γ-tubulin is a microtubule nucleator without being complexed in γ-TuRC. Fibrillar arrays of γ-tubulin were demonstrated in plant and animal cells and the ability of γ-tubulin to assemble into linear oligomers/polymers was confirmed in vitro for both native and recombinant γ-tubulin. The functions of γ-tubulin as a template for microtubule nucleation or in promoting spontaneous nucleation is outlined. Higher plants represent an excellent model for studies on the role of γ-tubulin in nucleation due to their acentrosomal nature and high abundancy and conservation of γ-tubulin including its intrinsic ability to assemble filaments. The defining scaffolding or sequestration functions of plant γ-tubulin in microtubule organization or in nuclear processes will help our understanding of its cellular roles in eukaryotes.
- MeSH
- buňky metabolismus MeSH
- centrozom metabolismus MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- sekvence aminokyselin MeSH
- tubulin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development.
- MeSH
- autoantigeny metabolismus MeSH
- buněčný cyklus MeSH
- centrozom metabolismus MeSH
- cilie metabolismus MeSH
- cytoskeletální proteiny metabolismus MeSH
- DEAD-box RNA-helikasy metabolismus MeSH
- eukaryotický iniciační faktor 4A metabolismus MeSH
- exony genetika MeSH
- jaderné proteiny metabolismus MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nervové kmenové buňky metabolismus MeSH
- proliferace buněk MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- proteosyntéza MeSH
- transport RNA * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The spermatozoon ultrastructure of the progenetic cestode Diplocotyle olrikii (Spathebothriidea) has been examined using transmission electron microscopy and cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) for glycogen. The spermatozoon is a filiform cell, tapered at both extremities. Its moderately electron-dense cytoplasm possesses two parallel axonemes of unequal lengths. New for the Cestoda is a finding of three types of the mature spermatozoa with respect to different axonemal structure. The first type has both axonemes with standard 9 + '1' trepaxonematan pattern. The second type is represented by a spermatozoon having one axoneme with 9 + '1' structure and the second one with 9 + 0 pattern. The third type includes the two axonemes with 9 + 0 pattern. Microtubule doublets of the 9 + 0 axonemes contain either inner dynein arms or no dynein arms. In addition to the two axonemes, all three types of the mature sperm cells contain parallel nucleus, parallel cortical microtubules, four electron-dense plaques/attachment zones, and glycogen. The anterior extremity of the gamete exhibits a centriole surrounded by a semiarc of up to five electron-dense tubular structures. The distal end of the first type spermatozoa exhibits two morphological variants, represented either by (i) nucleus or (ii) remnants of the disorganized axoneme. Distal extremity of the spermatozoa of the second and third types contains doublets and singlets of disorganized axoneme. The ultrastructural characters of the spermatozoon of progenetic D. olrikii support the basal position of the Spathebothriidea within the Eucestoda.
- MeSH
- axonema ultrastruktura MeSH
- buněčné jádro ultrastruktura MeSH
- centrioly ultrastruktura MeSH
- Cestoda ultrastruktura MeSH
- cytoplazma ultrastruktura MeSH
- spermatogeneze fyziologie MeSH
- spermie ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb- and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.
- MeSH
- androsteny farmakologie MeSH
- antagonisté androgenů farmakologie MeSH
- antigeny povrchové metabolismus MeSH
- benzamidy farmakologie MeSH
- buňky PC-3 MeSH
- centrozom metabolismus MeSH
- fenylthiohydantoin farmakologie MeSH
- glutamátkarboxypeptidasa II metabolismus MeSH
- imunokonjugáty farmakologie MeSH
- lidé MeSH
- modulátory tubulinu farmakologie MeSH
- monoklonální protilátky farmakologie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty rezistentní na kastraci farmakoterapie metabolismus MeSH
- nitrily farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH