Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.
- MeSH
- cyklooxygenasa 1 * MeSH
- DEAD box protein 58 MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- játra * metabolismus patologie MeSH
- lidé MeSH
- membránové proteiny MeSH
- mitochondriální proteiny metabolismus genetika MeSH
- mitochondrie metabolismus MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oxidativní fosforylace * MeSH
- proteosyntéza MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- respirační komplex IV * metabolismus genetika MeSH
- RNA mitochondriální genetika metabolismus MeSH
- zánět * metabolismus genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.
- MeSH
- lidé MeSH
- lipopolysacharidy MeSH
- nádory prostaty * MeSH
- radiační expozice * MeSH
- radiační onkologie * MeSH
- zánět genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
- MeSH
- gastrointestinální nádory * genetika MeSH
- karcinogeneze genetika MeSH
- mukoproteiny genetika MeSH
- myši MeSH
- nádorové mikroprostředí MeSH
- onkogenní proteiny * genetika MeSH
- proteindisulfidisomerasy MeSH
- zánět genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non-T2 mechanisms are poorly understood in asthma but represent a redefined unmet medical need. OBJECTIVE: We sought to gain a better understanding of genetic contributions to T2-low asthma. METHODS: We utilized an unbiased genome-wide association study of patients with moderate to severe asthma stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hits. RESULTS: We identified a novel protective single nucleotide polymorphism at chr19q13.41, which is selectively associated with T2-low asthma and establishes Kallikrein-related peptidase 5 (KLK5) as the causal gene mediating this association. Heterozygous carriers of the single nucleotide polymorphisms have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Finally, overexpression of KLK5 in airway or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION: Our data identify KLK5 to be the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.
- MeSH
- bronchiální astma * genetika MeSH
- celogenomová asociační studie * MeSH
- chemokiny genetika MeSH
- cytokiny metabolismus MeSH
- interleukin-13 genetika MeSH
- interleukin-4 genetika MeSH
- kalikreiny genetika metabolismus MeSH
- lidé MeSH
- neutralizující protilátky genetika MeSH
- zánět genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Our study presents a novel germline c.1715G>T (p.G572V) mutation in the gene encoding Toll-like receptor 8 (TLR8) causing an autoimmune and autoinflammatory disorder in a family with monozygotic male twins, who suffer from severe autoimmune hemolytic anemia worsening with infections, and autoinflammation presenting as fevers, enteritis, arthritis, and CNS vasculitis. The pathogenicity of the mutation was confirmed by in vitro assays on transfected cell lines and primary cells. The p.G572V mutation causes impaired stability of the TLR8 protein, cross-reactivity to TLR7 ligands and reduced ability of TLR8 to attenuate TLR7 signaling. This imbalance toward TLR7-dependent signaling leads to increased pro-inflammatory responses, such as nuclear factor-κB (NF-κB) activation and production of pro-inflammatory cytokines IL-1β, IL-6, and TNFα. This unique TLR8 mutation with partial TLR8 protein loss and hyperinflammatory phenotype mediated by TLR7 ligands represents a novel inborn error of immunity with childhood-onset and a good response to TLR7 inhibition.
- MeSH
- autoimunitní hemolytická anemie genetika imunologie MeSH
- cytokiny genetika imunologie MeSH
- dvojčata monozygotní MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mutace * MeSH
- posouzení stavu pacienta MeSH
- toll-like receptor 7 genetika imunologie MeSH
- toll-like receptor 8 genetika imunologie MeSH
- zánět genetika imunologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- studie na dvojčatech MeSH
Familial hypercholesterolemia (FH), is an autosomal dominant disorder caused by mutations in the LDLR, APOB, PCSK9, and APOE genes and is characterized by high plasma levels of total and low-density lipoprotein (LDL) cholesterol. Our study aimed to analyze the influences of two different therapies on a wide spectrum of plasma protein biomarkers of cardiovascular diseases. Plasma from FH patients under hypolipidemic therapy (N = 18; men = 8, age 55.4 ± 13.1 years) and patients under combined long-term LDL apheresis/hypolipidemic therapy (N = 14; men = 7; age 58.0 ± 13.6 years) were analyzed in our study. We measured a profile of 184 cardiovascular disease (CVD) associated proteins using a proximity extension assay (PEA). Hypolipidemic therapy significantly (all p < 0.01) influenced 10 plasma proteins (TM, DKK1, CCL3, CD4, PDGF subunit B, AGRP, IL18, THPO, and LOX1 decreased; ST2 increased). Under combined apheresis/hypolipidemic treatment, 18 plasma proteins (LDLR, PCSK9, MMP-3, GDF2, CTRC, SORT1, VEGFD, IL27, CCL24, and KIM1 decreased; OPN, COL1A1, KLK6, IL4RA, PLC, TNFR1, GLO1, and PTX3 increased) were significantly affected (all p < 0.006). Hypolipidemic treatment mainly affected biomarkers involved in vascular endothelial maintenance. Combined therapy influenced proteins that participate in cholesterol metabolism and inflammation.
- MeSH
- anticholesteremika terapeutické užití MeSH
- biologické markery krev MeSH
- cholesterol krev metabolismus MeSH
- dospělí MeSH
- hyperlipoproteinemie typ II krev farmakoterapie genetika patologie MeSH
- kardiovaskulární nemoci krev farmakoterapie genetika patologie MeSH
- krevní proteiny klasifikace genetika izolace a purifikace MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- zánět krev genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: About every fourth patient with major depressive disorder (MDD) shows evidence of systemic inflammation. Previous studies have shown inflammation-depression associations of multiple serum inflammatory markers and multiple specific depressive symptoms. It remains unclear, however, if these associations extend to genetic/lifetime predisposition to higher inflammatory marker levels and what role metabolic factors such as Body Mass Index (BMI) play. It is also unclear whether inflammation-symptom associations reflect direct or indirect associations, which can be disentangled using network analysis. METHODS: This study examined associations of polygenic risk scores (PRSs) for immuno-metabolic markers (C-reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, BMI) with seven depressive symptoms in one general population sample, the UK Biobank study (n = 110,010), and two patient samples, the Munich Antidepressant Response Signature (MARS, n = 1058) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D, n = 1143) studies. Network analysis was applied jointly for these samples using fused graphical least absolute shrinkage and selection operator (FGL) estimation as primary analysis and, individually, using unregularized model search estimation. Stability of results was assessed using bootstrapping and three consistency criteria were defined to appraise robustness and replicability of results across estimation methods, network bootstrapping, and samples. RESULTS: Network analysis results displayed to-be-expected PRS-PRS and symptom-symptom associations (termed edges), respectively, that were mostly positive. Using FGL estimation, results further suggested 28, 29, and six PRS-symptom edges in MARS, STAR*D, and UK Biobank samples, respectively. Unregularized model search estimation suggested three PRS-symptom edges in the UK Biobank sample. Applying our consistency criteria to these associations indicated that only the association of higher CRP PRS with greater changes in appetite fulfilled all three criteria. Four additional associations fulfilled at least two consistency criteria; specifically, higher CRP PRS was associated with greater fatigue and reduced anhedonia, higher TNF-α PRS was associated with greater fatigue, and higher BMI PRS with greater changes in appetite and anhedonia. Associations of the BMI PRS with anhedonia, however, showed an inconsistent valence across estimation methods. CONCLUSIONS: Genetic predisposition to higher systemic inflammatory markers are primarily associated with somatic/neurovegetative symptoms of depression such as changes in appetite and fatigue, consistent with previous studies based on circulating levels of inflammatory markers. We extend these findings by providing evidence that associations are direct (using network analysis) and extend to genetic predisposition to immuno-metabolic markers (using PRSs). Our findings can inform selection of patients with inflammation-related symptoms into clinical trials of immune-modulating drugs for MDD.
- MeSH
- antidepresiva terapeutické užití MeSH
- C-reaktivní protein analýza MeSH
- deprese * genetika MeSH
- depresivní porucha unipolární * farmakoterapie genetika MeSH
- lidé MeSH
- multifaktoriální dědičnost MeSH
- zánět farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.
- MeSH
- degenerace meziobratlové ploténky genetika mikrobiologie MeSH
- dospělí MeSH
- interakce hostitele a patogenu MeSH
- interleukin-1beta genetika MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- meziobratlová ploténka metabolismus mikrobiologie MeSH
- neurotrofní faktory genetika MeSH
- Propionibacterium acnes fyziologie MeSH
- upregulace MeSH
- zánět genetika mikrobiologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The transcription factor c-Myb can be involved in the activation of many genes with protumorigenic function; however, its role in breast cancer (BC) development is still under discussion. c-Myb is considered as a tumor-promoting factor in the early phases of BC, on the other hand, its expression in BC patients relates to a good prognosis. Previously, we have shown that c-Myb controls the capacity of BC cells to form spontaneous lung metastasis. Reduced seeding of BC cells to the lungs is linked to high expression of c-Myb and a decline in expression of a specific set of inflammatory genes. Here, we unraveled a c-Myb-IL1α-NF-κB signaling axis that takes place in tumor cells. We report that an overexpression of c-Myb interfered with the activity of NF-κB in several BC cell lines. We identified IL1α to be essential for this interference since it was abrogated in the IL1α-deficient cells. Overexpression of IL1α, as well as addition of recombinant IL1α protein, activated NF-κB signaling and restored expression of the inflammatory signature genes suppressed by c-Myb. The endogenous levels of c-Myb negatively correlated with IL1α on both transcriptional and protein levels across BC cell lines. We concluded that inhibition of IL1α expression by c-Myb reduces NF-κB activity and disconnects the inflammatory circuit, a potentially targetable mechanism to mimic the antimetastatic effect of c-Myb with therapeutic perspective.
- MeSH
- epitelo-mezenchymální tranzice MeSH
- interleukin-1alfa metabolismus MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory prsu etiologie metabolismus patologie MeSH
- NF-kappa B metabolismus MeSH
- protoonkogenní proteiny c-myb metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce * MeSH
- stres endoplazmatického retikula MeSH
- zánět genetika metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH