Previous research indicated that the cytotoxic activity of the antitumor platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MESS) was not primarily attributed to DNA binding, despite the complex being confirmed to localize also in the nucleus. In this study, we have demonstrated that the antiproliferative activity of 56MESS indeed involves DNA binding. Furthermore, in addition to binding duplex DNA, the complex also interacts with non-canonical secondary DNA structures, such as G-quadruplexes (G4s) and i-Motifs (iMs). This interaction leads to the suppression of G-regulated oncogene expression and disrupts key enzymatic processes associated with DNA, potentially contributing to DNA damage and the biological activity of 56MESS. These findings build upon previously published results, revealing that the anticancer activity of 56MESS is significantly more multifaceted than previously understood, involving multiple distinct mechanisms.
- MeSH
- DNA metabolismus chemie MeSH
- down regulace * účinky léků MeSH
- G-kvadruplexy * účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- organoplatinové sloučeniny * farmakologie chemie MeSH
- poškození DNA * účinky léků MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemie MeSH
- protoonkogenní proteiny c-myc * genetika metabolismus MeSH
- protoonkogenní proteiny p21(ras) * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Due to poor treatment adherence and lifestyle-based interventions, chronic hypertension is a dominant risk factor predisposing individuals to heart failure and malignant arrhythmias. We investigated the impact of the postnatal acclimation of hairless SHR to ambient temperature that is, for them, below thermoneutrality, on the electrical coupling protein connexin-43 (Cx43) and pro-fibrotic markers in both heart ventricles of male and female hairless SHR rats compared to the wild SHR. METHODS: Some 6-month-acclimated male and female hairless SHR as well as age- and sex-matched wild SHR were included and compared with the non-hypertensive Wistar strain. The left and right heart ventricles were examined for Cx43 topology, myocardial structure, and the histochemistry of capillaries. The protein levels of Cx43, relevant protein kinases, and extracellular matrix proteins (ECMs) were determined by immunoblotting. MMP-2 activity was assessed via zymography, and susceptibility to malignant arrhythmias was tested ex vivo. RESULTS: Cx43 and its phosphorylated variant pCx43368 were significantly reduced in the left heart ventricles of wild SHR males, while to a lesser extent in the hairless SHR. In contrast, these proteins were not significantly altered in the right heart ventricles of males or in both heart ventricles in females, regardless of the rat strain. Pro-arrhythmic Cx43 topology was detected in the left heart ventricle of wild SHR and to a lesser extent in hairless SHR males. TGFβ protein was significantly increased only in the left ventricle of the wild SHR males. MMP-2 activity was increased in the right ventricle but not in the left ventricles of both males and females, regardless of the rat strain. CONCLUSIONS: The findings indicate that the postnatal acclimation of hairless SHR to ambient temperature hampers the downregulation of Cx43 in the left heart ventricle compared to wild SHR males. The decline of Cx43 was much less pronounced in females and not observed in the right heart ventricles, regardless of the rat strain. It may impact the susceptibility of the heart to malignant arrhythmias.
- MeSH
- aklimatizace MeSH
- down regulace MeSH
- hypertenze * metabolismus MeSH
- konexin 43 * metabolismus genetika MeSH
- krysa rodu rattus MeSH
- potkani inbrední SHR * MeSH
- potkani Wistar MeSH
- srdeční arytmie * metabolismus etiologie MeSH
- srdeční komory * metabolismus MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.
- MeSH
- down regulace * MeSH
- elektrická stimulace MeSH
- elektrostimulační terapie metody MeSH
- fibróza * MeSH
- kondiční příprava zvířat fyziologie MeSH
- kosterní svaly * metabolismus patologie MeSH
- krysa rodu rattus MeSH
- nemoci svalů metabolismus patologie prevence a kontrola etiologie MeSH
- potkani Wistar MeSH
- PPARGC1A * metabolismus MeSH
- progrese nemoci MeSH
- signální transdukce fyziologie MeSH
- vaskulární endoteliální růstový faktor A * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cervical squamous cell carcinoma (CSCC) represents a malignant subtype of cervical cancer. Identification of novel biomarkers for CSCC development could enhance therapeutic efficiency and improve the patients' outcomes. This study focused on lncRNA EMX2OS, evaluating its expression and significance in the progression of CSCC while exploring its potential as a therapeutic target. A cohort of 135 patients with CSCC were enrolled, and tissue samples were collected for analysis. The expression of EMX2OS in the tissues was quantified by PCR, with its correlation to the clinicopathological features, and prognosis was evaluated by χ2, Kaplan-Meier and Cox regression analyses. The regulatory effects of EMX2OS on CSCC cells were investigated by CCK8 and Transwell assays, while the underlying molecular mechanisms were elucidated by luciferase reporter assays. Significant down-regulation of EMX2OS was observed in CSCC, correlating with advanced FIGO stages, poor differentiation and adverse prognosis of patients. Over-expression of EMX2OS significantly suppressed cell growth and metastasis in CSCC. Negative regulation of miR-574-5p by EMX2OS was observed, and over-expression of miR-574-5p alleviated the inhibition of CSCC cells by EMX2OS. Down-regulated EMX2OS indicates severe disease progression and poor prognosis in CSCC. Over-expression of EMX2OS could inhibit CSCC cell growth and metastasis by negatively modulating miR-574-5p.
- MeSH
- down regulace * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku * genetika patologie metabolismus MeSH
- prognóza MeSH
- progrese nemoci * MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese u nádorů * MeSH
- RNA dlouhá nekódující * genetika metabolismus MeSH
- spinocelulární karcinom * genetika patologie metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Coronary heart disease (CHD) is one of the most commonly seen cardiovascular conditions across the globe. Junctional cadherin 5 associated (JCAD) protein is found in the intercellular junctions of endothelial cells and linked to cardiovascular diseases. Nonetheless, the influence of JCAD on cardiomyocyte injury caused by CHD is unclear. A model of H2O2-induced H9c2 cell injury was constructed, and JCAD mRNA and protein levels were assessed by qRT-PCR and Western blot. The impacts of JCAD on the proliferation or apoptosis of H9c2 cells were explored by CCK-8 assay, Western blot and TUNEL staining. The effect of JCAD on the inflammatory response and vascular endothelial function of H9c2 cells was detected using ELISA kits. The levels of Wnt/β-catenin pathway-related proteins were assessed by Western blot. H2O2 treatment led to a rise in the levels of JCAD in H9c2 cells. Over-expression of JCAD promoted H2O2-induced cellular injury, leading to notably elevated contents of inflammatory factors, along with vascular endothelial dysfunction. In contrast to over-expression of JCAD, silencing of JCAD attenuated H2O2-induced cellular injury and inhibited apoptosis, inflammatory response and vascular endothelial dysfunction. Notably, JCAD could regulate the Wnt/β-catenin pathway, while DKK-1, Wnt/β-catenin pathway antagonist, counteracted the enhancing impact of JCAD over-expression on H2O2-induced H9c2 cell injury, further confirming that JCAD acts by regulating the Wnt/β-catenin pathway. In summary, over-expression of JCAD promoted H2O2-induced H9c2 cell injury by activating the Wnt/β-catenin pathway, while silencing of JCAD attenuated the H2O2-induced cell injury.
- MeSH
- apoptóza * účinky léků MeSH
- beta-katenin metabolismus MeSH
- buněčné linie MeSH
- down regulace * účinky léků MeSH
- kadheriny metabolismus MeSH
- kardiomyocyty * metabolismus účinky léků MeSH
- krysa rodu rattus MeSH
- peroxid vodíku * farmakologie MeSH
- proliferace buněk účinky léků MeSH
- signální dráha Wnt * účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Cav3.1, Cav3.2, and Cav3.3 channels nearly abolished whole-cell T-type currents. Recording of intramembrane charge movements revealed that SCAMP5-induced inhibition of T-type currents is primarily caused by the reduced expression of functional channels in the plasma membrane. Moreover, we show that SCAMP5-mediated downregulation of Cav3.2 channels is essentially preserved with disease-causing SCAMP5 R91W and G180W mutations. Hence, this study extends our previous findings with SCAMP2 and indicates that SCAMP5 also contributes to repressing the expression of T-type channels in the plasma membrane.
- MeSH
- buněčná membrána MeSH
- down regulace MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mutace MeSH
- vápníkové kanály - typ T * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
High expression of the androgen receptor (AR) and the disruption of its regulation are strongly responsible for the development of prostate cancer (PCa). Therapeutically relevant non-steroidal or steroidal antiandrogens are able to block the AR effect by eliminating AR-mediated signalling. Herein we report the synthesis of novel steroidal pyrazoles derived from the natural sex hormone 5α-dihydrotestosterone (DHT). 2-Ethylidene or 2-(hetero)arylidene derivatives of DHT obtained by regioselective Claisen-Schmidt condensation with acetaldehyde or (hetero)aromatic aldehydes in alkaline ethanol were reacted with monosubstituted hydrazines to give A-ring-fused 1,5-disubstituted pyrazoles as main or exclusive products, depending on the reaction conditions applied. Spontaneous or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)-induced oxidation of the primarily formed pyrazolines resulted in the desired products in moderate to good yields, while 17-oxidation also occurred by using the Jones reagent as a strong oxidant. Transcriptional activity of the AR in a reporter cell line was examined for all novel compounds, and several previously synthesized similar DHT-based pyrazoles with differently substituted heteroring were also included to obtain information about the structure-activity relationship. Two specific regioisomeric groups of derivatives significantly diminished the transcriptional activity of the AR in reporter cell line in 10 μM concentration, and displayed reasonable antiproliferative activity in AR-positive PCa cell lines. Lead compound (3d) was found to be a potent AR antagonist (IC50 = 1.18 μM), it generally suppressed AR signalling in time and dose dependent manner, moreover, it also led to a sharp decrease in wt-AR protein level probably caused by proteasomal degradation. We confirmed the antiproliferative activity of 3d in AR-positive PCa cell lines (with GI50 in low micromolar ranges), and its cellular, biochemical and in silico binding in AR ligand-binding domain. Moreover, compound 3d was shown to be potent even ex vivo in patient-derived tissues, which highlights the therapeutic potential of A-ring-fused pyrazoles.
- MeSH
- androgenní receptory metabolismus MeSH
- dihydrotestosteron * farmakologie metabolismus MeSH
- down regulace MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty * farmakoterapie metabolismus MeSH
- pyrazoly MeSH
- steroidy terapeutické užití MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The incidence of cerebrovascular diseases increases significantly with aging. This study aimed to test the hypothesis that aging may influence the protein kinase A (PKA)-dependent vasodilation via RyR/BKCa pathway in the middle cerebral arteries (MCA). Male Sprague-Dawley rats were randomly divided into control (4-6 month-old) and aged (24-month-old) groups. The functions of MCA and ion channel activities in smooth muscle cells were examined using myograph system and patch-clamp. Aging decreased the isoproterenol/forskolin-induced relaxation in the MCA. Large-conductance Ca(2+)-activated-K(+) (BKCa) channel inhibitor, iberiotoxin, significantly attenuated the forskolin-induced vasodilatation and hyperpolarization in the young group, but not in the aged group. The amplitude and frequency of spontaneous transient outward currents (STOCs) were significantly decreased in the aged group. Single channel recording revealed that the mean open time of BKCa channels were decreased, while an increased mean closed time of BKCa channels were found in the aged group. The Ca(2+)/voltage sensitivity of the channels was decreased accompanied by reduced BKCa alpha and beta1-subunit, the expression of RyR2, PKA-Calpha and PKA-Cbeta subunits were also declined in the aged group. Aging induced down-regulation of PKA/BKCa pathway in cerebral artery in rats. The results provides new information on further understanding in cerebrovascular diseases resulted from age-related cerebral vascular dysfunction.
- MeSH
- arteriae cerebrales * fyziologie MeSH
- down regulace MeSH
- kolforsin MeSH
- krysa rodu rattus MeSH
- potkani Sprague-Dawley MeSH
- proteinkinasy závislé na cyklickém AMP * MeSH
- stárnutí MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Hepatocellular carcinoma (HCC) is a major contributor to the worldwide cancer burden. Recent studies on HCC have demonstrated dramatic alterations in expression of several cytochrome P450 (CYP) family members that play a crucial role in biotransformation of many drugs and other xenobiotics; however, the mechanisms responsible for their deregulation remain unclear. METHODS: We investigated a potential involvement of miRNAs in downregulation of expression of CYPs observed in HCC tumors. We compared miRNA expression profiles (TaqMan Array Human MicroRNA v3.0 TLDA qPCR) between HCC human patient tumors with strong (CYP-) and weak/no (CYP+) downregulation of drug-metabolizing CYPs. The role of significantly deregulated miRNAs in modulation of expression of the CYPs and associated xenobiotic receptors was then investigated in human liver HepaRG cells transfected with relevant miRNA mimics or inhibitors. RESULTS: We identified five differentially expressed miRNAs in CYP- versus CYP+ tumors, namely miR-29c, miR-125b1, miR-505, miR-653 and miR-675. The two most-upregulated miRNAs found in CYP- tumor samples, miR-29c and miR-653, were found to act as efficient suppressors of CYP1A2 or AHR expression. CONCLUSIONS: Our results revealed a novel role of miR-653 and miR-29c in regulation of expresion of CYPs involved in crucial biotransformation processes in liver, which are often deregulated during liver cancer progression.
- MeSH
- biotransformace MeSH
- cytochrom P-450 CYP1A2 metabolismus MeSH
- down regulace MeSH
- hepatocelulární karcinom * genetika metabolismus MeSH
- hepatocyty metabolismus MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory jater * genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- xenobiotika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES: In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS: We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS: We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.
- MeSH
- anaplazie genetika MeSH
- dítě MeSH
- down regulace MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- myši MeSH
- nádory ledvin * farmakoterapie genetika metabolismus MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- protoonkogen n-myc genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Wilmsův nádor * farmakoterapie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH