INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
- Klíčová slova
- 5/6 Renal mass reduction, Chronic kidney disease, Endothelin A receptor blocker, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase inhibitor,
- MeSH
- antagonisté endotelinového receptoru A farmakologie MeSH
- chronická renální insuficience prevence a kontrola MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze MeSH
- krysa rodu Rattus MeSH
- nefrektomie MeSH
- potkani transgenní MeSH
- receptor endotelinu A MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté endotelinového receptoru A MeSH
- epoxid hydrolasy MeSH
- receptor endotelinu A MeSH
OBJECTIVE: We evaluated the hypothesis that the development of renal dysfunction and congestive heart failure (CHF) caused by volume overload in rats with angiotensin II (ANG II)-dependent hypertension is associated with altered renal vascular responsiveness to ANG II and to epoxyeicosatrienoic acids (EETs). METHODS: Ren-2 transgenic rats (TGRs) were used as a model of ANG II-dependent hypertension. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF). Renal blood flow (RBF) responses were determined to renal arterial administration of ANG II, native 11,12-EET, an analog of 14,15-EETs (EET-A), norepinephrine (NE), acetylcholine (Ach) and bradykinin (Bk) in healthy (i.e., sham-operated) TGR and ACF TGR (5 weeks after ACF creation). RESULTS: Selective intrarenal administration of neither vasoactive drug altered mean arterial pressure in any group. Administration of ANG II caused greater decreases in RBF in ACF TGR than in sham-operated TGR, whereas after administration of NE the respective decreases were comparable in the 2 groups. Administration of Ach and Bk elicited significantly higher RBF increases in ACF TGR as compared with sham-operated TGR. In contrast, administration of 11,12-EET and EET-A caused significantly smaller RBF increases in ACF TGR than in sham-operated TGR. CONCLUSION: The findings show that 5 weeks after creation of ACF, the TGR exhibit exaggerated renal vasoconstrictor responses to ANG II and reduced renal vasodilatory responses to EETs, suggesting that both these alterations might play an important role in the development of renal dysfunction in this model of CHF.
- Klíčová slova
- Acetylcholine, Angiotensin II, Aorto-caval fistula, Bradykinin, Congestive heart failure, Epoxyeicosatrienoic acid, Hypertension, Norepinephrine, Renal blood flow, Renal dysfunction, Renal vascular reactivity,
- MeSH
- angiotensin II škodlivé účinky MeSH
- arteria pulmonalis abnormality patofyziologie MeSH
- arterioarteriální píštěl patofyziologie MeSH
- hypertenze chemicky indukované komplikace MeSH
- krysa rodu Rattus MeSH
- potkani transgenní MeSH
- renální oběh účinky léků MeSH
- srdeční selhání komplikace patofyziologie MeSH
- vazodilatace účinky léků MeSH
- vazokonstrikce účinky léků MeSH
- vazokonstriktory farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin II MeSH
- vazokonstriktory MeSH
BACKGROUND/AIMS: We found recently that increasing renal epoxyeicosatrienoic acids (EETs) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, shows renoprotective actions and retards the progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). This prompted us to examine if additional protection is provided when sEH inhibitor is added to the standard renin-angiotensin system (RAS) blockade, specifically in rats with established CKD. METHODS: For RAS blockade, an angiotensin-converting enzyme inhibitor along with an angiotensin II type receptor blocker was used. RAS blockade was compared to sEH inhibition added to the RAS blockade. Treatments were initiated 6 weeks after 5/6 NX in TGR and the follow-up period was 60 weeks. RESULTS: Combined RAS and sEH blockade exhibited additional positive impact on the rat survival rate, further reduced albuminuria, further reduced glomerular and tubulointerstitial injury, and attenuated the decline in creatinine clearance when compared to 5/6 NX TGR subjected to RAS blockade alone. These additional beneficial actions were associated with normalization of the intrarenal EETs deficient and a further reduction of urinary angiotensinogen excretion. CONCLUSION: This study provides evidence that addition of pharmacological inhibition of sEH to RAS blockade in 5/6 NX TGR enhances renoprotection and retards progression of CKD, notably, when applied at an advanced stage.
- Klíčová slova
- 5/6 nephrectomy, Chronic kidney disease, Epoxyeicosatrienoic acids, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase,
- MeSH
- albuminurie farmakoterapie MeSH
- chronická renální insuficience farmakoterapie mortalita patofyziologie chirurgie MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze MeSH
- inhibitory ACE terapeutické užití MeSH
- kombinovaná farmakoterapie MeSH
- krysa rodu Rattus MeSH
- míra přežití MeSH
- nefrektomie MeSH
- potkani transgenní MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epoxid hydrolasy MeSH
- inhibitory ACE MeSH