- Autor
-
Pracoviště
Bioelectronics Neurophysiology and Engineeri... 1 Cognitive Systems and Neurosciences Czech In... 1 Department of Neurological Surgery Universit... 1 Department of Neurology University of Califo... 1 Department of Physiology and Biomedical Engi... 1 Institute of Biomedical Engineering Departme... 1 Medical Research Council Brain Network Dynam... 1 Surry Sleep Research Centre University of Su... 1 UK Dementia Research Institute Care Research... 1
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Grant - země
- Grantová podpora
- Nejvíce citované
- Fleming, John E
-
Kremen, Vaclav
Autor Kremen, Vaclav Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Gilron, Ro'ee
- Gregg, Nicholas M
- Zamora, Mayela
- Dijk, Derk-Jan
- Starr, Philip A
- Worrell, Gregory A
- Little, Simon
- Denison, Timothy J
PubMed
35313697
PubMed Central
PMC8933700
DOI
10.1016/j.isci.2022.104028
PII: S2589-0042(22)00298-X
Knihovny.cz E-zdroje
Biological rhythms pervade physiology and pathophysiology across multiple timescales. Because of the limited sensing and algorithm capabilities of neuromodulation device technology to-date, insight into the influence of these rhythms on the efficacy of bioelectronic medicine has been infeasible. As the development of new devices begins to mitigate previous technology limitations, we propose that future devices should integrate chronobiological considerations in their control structures to maximize the benefits of neuromodulation therapy. We motivate this proposition with preliminary longitudinal data recorded from patients with Parkinson's disease and epilepsy during deep brain stimulation therapy, where periodic symptom biomarkers are synchronized to sub-daily, daily, and longer timescale rhythms. We suggest a physiological control structure for future bioelectronic devices that incorporates time-based adaptation of stimulation control, locked to patient-specific biological rhythms, as an adjunct to classical control methods and illustrate the concept with initial results from three of our recent case studies using chronotherapy-enabled prototypes.
- Klíčová slova
- Bioelectronics, Biological sciences, Biotechnology, Neuroscience,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.