The behavior of chemical warfare agents (CWAs) on urban materials, such as concrete, significantly impacts forensic and military responses to chemical incidents. This study examined the persistence and degradation mechanisms of sarin (GB), soman (GD), and sulfur mustard (HD) on three types of commonly used concrete with varying water-cement ratios. Over two months, we evaluated the effects of concrete composition, temperature, and fragment size on CWA behavior. Half-lives and activation energies for CWA dissipation were calculated under various conditions. Results showed that concrete properties and external temperature strongly influenced dissipation rates. G-series agents underwent rapid hydrolysis, forming methylphosphonates, while HD degradation involved elimination, nucleophilic substitution, and oxidation, producing several previously unreported byproducts. Smaller concrete fragments increased recovery values and accelerated degradation due to greater surface area exposure, and higher temperatures further enhanced dissipation rates, particularly for volatile agents. Differences in dissipation among concrete types were linked to their physical and chemical properties, notably water-cement ratios. This study highlights the challenges of detecting CWAs due to their rapid penetration and transformation in concrete and provides insights for improving sampling, identification, and decontamination strategies under realistic conditions.
- Klíčová slova
- Chemical weapons, Forensic chemistry, Gas chromatography, Hydrolysis, Nerve agents,
- Publikační typ
- časopisecké články MeSH
Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order to test and calibrate sensitive IMS instrumentation that warns against the deadly chemical weapons. DIMP was measured from 2 ppbv (15 μg m-3) to 500 ppbv in the air using a pocket-held ToF ion mobility spectrometer, model LCD-3.2E, with a non-radioactive ionization source and ammonia doping in positive ion mode. Excellent sensitivity (LoD of 0.24 ppbv and LoQ of 0.80 ppbv) was noticed; the linear response was up to 10 ppbv, while saturation occurred at >500 ppbv. DIMP identification by IMS relies on the formation of two distinct peaks: the monomer M·NH4+, with a reduced ion mobility K0 = 1.41 cm2 V-1 s-1, and the dimer M2·NH4+, with K0 = 1.04 cm2 V-1 s-1 (where M is the DIMP molecule); positive reactant ions (Pos RIP) have K0 = 2.31 cm2 V-1 s-1. Quantification of DIMP at trace levels was also achieved by GC-MS over the concentration range of 1.5 to 150 μg mL-1; using a capillary column (30 m × 0.25 mm × 0.25 μm) with a TG-5 SilMS stationary phase and temperature programming from 60 to 110 °C, DIMP retention time (RT) was ca. 8.5 min. The lowest amount of DIMP measured by GC-MS was 1.5 ng, with an LoD of 0.21 μg mL-1 and an LoQ of 0.62 μg mL-1 DIMP. Our results demonstrate that these methods provide robust tools for both on-site and off-site detection and quantification of DIMP at trace levels, a finding which has significant implications for forensic investigations of chemical agent use and for environmental monitoring of contamination by organophosphorus compounds.
The contamination of materials in urban areas by chemical weapons is a critical issue, especially as these materials can serve as key evidence in forensic investigations. Concrete, commonly found in urban environments, is highly porous and can retain chemical residues. However, its alkaline nature accelerates the degradation of chemical warfare agents, complicating the recovery of usable evidence. This study explores the recovery and persistence of alcohols and thiols, final degradation products of nerve and blistering agents, from two types of concrete matrices: lightweight concrete formworks and dense, steel-reinforced concrete blocks. Using an optimized method, uncrushed concrete fragments (up to 85 g) were extracted with acetone, monitoring two critical parameters: apparent recovery and persistence. The influence of external conditions, such as water addition, temperatures between 5°C and 35°C, and varying airflow speeds (1.7-5.1 m·s-1), was systematically evaluated. Reference conditions involved dried concrete at 22°C with no airflow. The findings revealed that alcohol recovery aligned with the volatility of the compounds, with denser concrete exhibiting lower recoveries but greater persistence. Thiols quickly converted to disulfides. Notably, temperature and moisture had the most profound effects on the recovery and persistence of the chemicals. These results highlight the importance of considering environmental factors when assessing chemical warfare agents and their degradation products in concrete, offering insights relevant to forensic science, environmental safety, and military defense. The study demonstrates how concrete's properties and external conditions can alter the forensic traceability of chemical contaminants.
- Klíčová slova
- VX, amino alcohol, chemical warfare agent, degradation products, gas chromatography, mustard gas, nerve agents, urban samples,
- Publikační typ
- časopisecké články MeSH
Understanding the fundamental physical characteristics of extremely toxic compounds and their behavior across different environments plays a crucial role in assessing their danger. Additionally, this knowledge informs the development of protocols for gathering forensic evidence related to harmful chemicals misuse. In 2018, former Russian spy Sergei Skripal and his daughter were poisoned in Salisbury, England, with a substance later identified as the unconventional nerve agent A-234. Contamination with the compound was found on items inside Skripal's home. The aim of this paper was to determine the persistence of A-234 on selected indoor surfaces. Ceramics, aluminum can, laminated chipboard, polyvinyl chloride (PVC) floor tile, polyethylene terephthalate (PET) bottle, acrylic paint and computer keyboard were used as matrices. The decrease in surface contamination and further fate of the compound was monitored for 12 weeks. Persistence determination involved optimizing the wipe sampling method. Simultaneously, evaporation from the surface and permeation of the contaminant into the matrix were closely monitored. The experimental findings indicate that the nerve agent exhibits remarkable persistence, particularly on impermeable surfaces. Notably, the process of A-234 evaporation plays a minor role in determining its fate, with detectable concentrations observed solely above solid, non-porous surfaces such as ceramics and aluminum can. The surface persistence half-life varied significantly, ranging from 12 min to 478 days, depending on the material. The article has implications for emergency response protocols, decontamination strategies, public health and crime scene investigations.
- Klíčová slova
- A-agents, Chemical weapons, Gas chromatography, Navalny, Novichok, Salisbury,
- MeSH
- monitorování životního prostředí MeSH
- nervová bojová látka * analýza MeSH
- polyethylentereftaláty chemie MeSH
- znečištění vzduchu ve vnitřním prostředí analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nervová bojová látka * MeSH
- polyethylentereftaláty MeSH
A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.
- Klíčová slova
- Acute toxicity, Hydrolysis, Nerve agent A-234, Reactivation, Therapy,
- MeSH
- acetylcholinesterasa MeSH
- antidota farmakologie MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory toxicita MeSH
- fosfor MeSH
- krysa rodu Rattus MeSH
- kyslík MeSH
- lidé MeSH
- oximy farmakologie MeSH
- pralidoximové sloučeniny * MeSH
- pyridinové sloučeniny farmakologie MeSH
- reaktivátory cholinesterasy * farmakologie MeSH
- taurin analogy a deriváty MeSH
- trimedoxim farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-(N-cyclohexylamino)ethanesulfonic acid MeSH Prohlížeč
- acetylcholinesterasa MeSH
- antidota MeSH
- asoxime chloride MeSH Prohlížeč
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- fosfor MeSH
- kyslík MeSH
- N,N'-monomethylenebis(pyridiniumaldoxime) MeSH Prohlížeč
- oximy MeSH
- pralidoxime MeSH Prohlížeč
- pralidoximové sloučeniny * MeSH
- pyridinové sloučeniny MeSH
- reaktivátory cholinesterasy * MeSH
- taurin MeSH
- trimedoxim MeSH
"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.
- Klíčová slova
- A-series agents, Analysis, Environmental stability, Physicochemical properties, Therapy, Toxicity,
- MeSH
- kontaminace léku * MeSH
- nervová bojová látka * toxicita MeSH
- organofosforové sloučeniny MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nervová bojová látka * MeSH
- organofosforové sloučeniny MeSH
Nerve agents have been used recently in the Syrian civil war. Collecting relevant samples for retrospective identification of an attack is often problematic. The article deals with the possibility of using contaminated gloves as an analytical sample for evidence of the chemical weapons use. There have not yet been published studies dealing with the identification of chemical warfare agents in this type of matrix, where the diversity of chemical properties of gloves and the lifetime of the contaminated sample would be considered. Sarin, soman, and cyclosarin were used as contaminants in the study. Nitrile, latex, and vinyl disposable gloves were chosen as matrices. The identification method was gas chromatography. Six solvents commonly used in military laboratories were tested as extractants. The extraction procedure was optimized in terms of the appropriate method (vortex) and the required extraction time (1 min) and resulted in significant reduction in sample preparation time. The chromatographic background of the extracts was also monitored in order to find a method with the least number of peaks interfering in the identification. Suitable solvents were hexane and acetonitrile. The lifetime of the sample was also investigated. The worst result was recorded for latex. For individual contaminants, the time varied depending on the volatility. The developed procedures were successfully validated within a sample handling effects scenario. The results demonstrate that in the event of an ongoing military risk at the site of an attack, even discarded disposable rubber glove type samples can be used as evidence.
- Klíčová slova
- G-agents, chemical warfare agents, deployable laboratory, polymer sample, sarin,
- MeSH
- guma * chemie MeSH
- latex MeSH
- nervová bojová látka * MeSH
- ochranné rukavice MeSH
- retrospektivní studie MeSH
- rozpouštědla MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guma * MeSH
- latex MeSH
- nervová bojová látka * MeSH
- rozpouštědla MeSH
Procedures for the extraction-spectrophotometric determination of tris(2-chloroethyl)amine, an alkylating agent known as a drug as well as a chemical warfare agent (nitrogen mustard HN-3), with 7 acid-base indicators of a triphenylmethane lactone type, phthaleins, were developed. Representatives of phthaleins without an oxygen bridge (thymolphthalein, o-cresolphthalein, naphtholphthalein) and with an oxygen bridge (fluorescein, 2',7'-dichlorofluorescein, eosin B and eosin Y) were used. The methods were based on the formation of ion pair complexes. Chloroform was used as a non-polar solvent for an extraction. The conditions to determine were optimized for the optimal pH of the buffer and the concentration of a phthalein as a reagent. The dependence on the reaction time in a water phase and the stoichiometry of extraction products were studied. The detection limits and the limits of the determination of separate procedures and conditional extraction constants were determined. Comparison with the spectrophotometric method of the group determination of alkyl halides and acyl halides using alkaline ethanol-water solution of thymolphthalein, the so-called T-135 agent, was conducted. While studying the selectivity, the possible interference of bis(2-chloroethyl)sulphide and 3 nitrogen mustards in the proposed procedures were verified. Copyright © 2016 John Wiley & Sons, Ltd.
- Klíčová slova
- nitrogen mustard, phthalein, spectrophotometry, tris(2-chloroethyl)amine,
- MeSH
- alkylační látky analýza izolace a purifikace MeSH
- chemické bojové látky analýza izolace a purifikace MeSH
- fenolftaleiny chemie MeSH
- koncentrace vodíkových iontů MeSH
- limita detekce MeSH
- pufry MeSH
- sloučeniny dusíkatého yperitu analýza izolace a purifikace MeSH
- spektrofotometrie metody MeSH
- voda analýza MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- 2,2',2''-trichlorotriethylamine MeSH Prohlížeč
- alkylační látky MeSH
- chemické bojové látky MeSH
- fenolftaleiny MeSH
- pufry MeSH
- sloučeniny dusíkatého yperitu MeSH
- voda MeSH