Stomatocystis goerresi sp. n., a gregarine (phylum Apicomplexa, Monocystidae) parasite of an important invasive earthworm in North America, Amynthas tokioensis (Beddard), is described. This is the second species placed into the genus, and details of its morphology and life cycle support Stomatocystis Bandyopadhyay, Mitra et Göçmen, 2006 as a valid taxon. The new species is described using standard nomenclature, measurements, shape descriptors, and photographs of living cells. The parasite was found only in A. tokioensis, and absent in sympatric earthworm species, suggesting it arrived when the earthworms were introduced from their origin from Japan. The species is distinctive from the type species in the genus, S. indica Bandyopadhyay, Mitra et Göçmen, 2006, in being substantially larger in all stages, found in only the host's seminal vesicles, and found in a different host species from East Asia. The distinctive trophozoites/gamonts develop a large funnel structure ringed with a collar of pronounced ridges, and the funnel appears even in the smallest cells. This funnel varies greatly in relative size (to the cell body) and shape, sometimes forming a large fan. The life cycle of S. goerresi is described including distinctive syzygy in which the funnels fuse and then produce a large cell with local centres of isogamete production (thus sex without gender). Gametes are large ( ~5 μm) spheres with complex tips. Oocyst production is large, > 1,000 per mature gametocyst. The genus Stomatocystis is placed into the Monocystidae, but the life cycle of the new species differs from those of other monocystid taxa, which may mean the Monocystidae are not monophyletic or life cycles are variable within the family. Prevalence of S. goerresi at the type locality was high (~ 90%). The parasites destroy the earthworm's organ of sperm self-storage thus eliminating the male function in the hermaphroditic host which may influence the ability of the earthworm to invade and be successful at new sites.
- Klíčová slova
- host specificity, introduced species, protist, standardised diagnostic morphology,
- MeSH
- Apicomplexa klasifikace genetika růst a vývoj izolace a purifikace MeSH
- Oligochaeta parazitologie MeSH
- stadia vývoje MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
- Klíčová slova
- Amphibia, Amphisbaenia, Carnivora, Chelonia, Chiroptera, Crocodylia, Insectivora, Lagomorpha, Marsupialia, Primates, Scandentia, Serpentes, parasitic protists, systematics, taxonomy,
- MeSH
- Apicomplexa izolace a purifikace MeSH
- biodiverzita MeSH
- klasifikace MeSH
- obojživelníci parazitologie MeSH
- obratlovci parazitologie MeSH
- plazi parazitologie MeSH
- ptáci parazitologie MeSH
- ryby parazitologie MeSH
- savci parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Archigregarines are a key group for understanding the early evolution of Apicomplexa. Here we report morphological, ultrastructural, and molecular phylogenetic evidence from two archigregarine species: Selenidium pygospionis sp. n. and S. pherusae sp. n. They exhibited typical features of archigregarines. Additionally, an axial row of vacuoles of a presumably nutrient distribution system was revealed in S. pygospionis. Intracellular stages of S. pygospionis found in the host intestinal epithelium may point to the initial intracellular localization in the course of parasite development. Available archigregarine SSU (18S) rDNA sequences formed four major lineages fitting the taxonomical affiliations of their hosts, but not the morphological or biological features used for the taxonomical revision by Levine (1971). Consequently, the genus Selenidioides Levine, 1971 should be abolished. The branching order of these lineages was unresolved; topology tests rejected neither para- nor monophyly of archigregarines. We provided phylogenies based on LSU (28S) rDNA and near-complete ribosomal operon (concatenated SSU, 5.8S, LSU rDNAs) sequences including S. pygospionis sequences. Although being preliminary, they nevertheless revealed the monophyly of gregarines previously challenged by many molecular phylogenetic studies. Despite their molecular-phylogenetic heterogeneity, archigregarines exhibit an extremely conservative plesiomorphic structure; their ultrastructural key features appear to be symplesiomorphies rather than synapomorphies.
- Klíčová slova
- 18S rDNA, 28S rDNA, Unicellular parasites, molecular phylogeny., polychaetes, ultrastructure,
- MeSH
- Apicomplexa klasifikace genetika izolace a purifikace ultrastruktura MeSH
- elektronová mikroskopie MeSH
- fylogeneze * MeSH
- lokomoce MeSH
- mikroskopie MeSH
- Polychaeta parazitologie MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 28S genetika MeSH
- RNA ribozomální 5.8S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- vodní organismy klasifikace genetika izolace a purifikace ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální 28S MeSH
- RNA ribozomální 5.8S MeSH
Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues.
- Klíčová slova
- 18S rDNA, Babesia, Cytauxzoon, Hepatozoon, Sarcocystis, Theileria, phylogeny,
- MeSH
- Apicomplexa klasifikace izolace a purifikace MeSH
- biodiverzita * MeSH
- interakce hostitele a parazita MeSH
- plazi parazitologie MeSH
- protozoální DNA analýza MeSH
- protozoální infekce zvířat parazitologie MeSH
- RNA ribozomální 18S analýza MeSH
- savci parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jihoafrická republika MeSH
- Názvy látek
- protozoální DNA MeSH
- RNA ribozomální 18S MeSH
Urosporids (Apicomplexa: Urosporidae) are eugregarines that parasitise marine invertebrates, such as annelids, molluscs, nemerteans and echinoderms, inhabiting their coelom and intestine. Urosporids exhibit considerable morphological plasticity, which correlates with their different modes of motility and variations in structure of their cortical zone, according to the localisation within the host. The gregarines Urospora ovalis and U. travisiae from the marine polychaete Travisia forbesii were investigated with an emphasis on their general morphology and phylogenetic position. Solitary ovoid trophozoites and syzygies of U. ovalis were located free in the host coelom and showed metabolic activity, a non-progressive movement with periodic changes of the cell shape. Solitary trophozoites of U. travisiae, attached to the host tissue or free floating in the coelom, were V-shaped. Detached trophozoites demonstrated gliding motility, a progressive movement without observable cell body changes. In both gregarines, the cortex formed numerous epicytic folds, but superfolds appeared exclusively on the surface of U. ovalis during metabolic activity. SSU rDNA sequences obtained from U. ovalis and U. travisiae revealed that they belong to the Lecudinoidea clade; however, they are not affiliated with other coelomic urosporids (Pterospora spp. and Lithocystis spp.), but surprisingly with intestinal lecudinids (Difficilina spp.) parasitising nemerteans.
- Klíčová slova
- 18S rDNA phylogeny., Urosporidae, gliding and metaboly, marine eugregarines, superfolds, ultrastructure,
- MeSH
- Apicomplexa klasifikace cytologie genetika izolace a purifikace MeSH
- fylogeneze MeSH
- lokomoce MeSH
- mikroskopie MeSH
- Polychaeta parazitologie MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
Blood smears prepared from the peripheral blood of 20 wild caught Amietia quecketti (Boulenger) from the North-West University Botanical Gardens, North West Province, South Africa, were examined for the presence of haemogregarines. A haemogregarine species comparative in morphology, host and geographical locality to that of Haemogregarina theileri Laveran, 1905 was detected. The original description of H. theileri was based solely on frog peripheral blood gamont stages. Later, further parasite stages, including trophozoites and merogonic liver stages, were recorded in a related Amietia sp. from equatorial Africa. This species was originally classified as a member of the genus Haemogregarina Danilewsky, 1885, but due to the close life cycle and morphological resemblance to those of Hepatozoon species, H. theileri was later transferred from Haemogregarina to Hepatozoon Miller, 1908. In the present study, meront and merozoite stages not described before, along with previously observed trophozoite, immature and mature gamont stages, are described from the peripheral blood of hosts. In addition, comparative phylogenetic analysis of the partial 18S rDNA sequence of Hepatozoon theileri to those of other haemogregarine species, including those of species of Hepatozoon and a Haemogregarina, support the taxonomic transfer of H. theileri to Hepatozoon, nesting H. theileri within a clade comprising species parasitising other amphibians. This is the first molecular and phylogenetic analysis of an African anuran species of Hepatozoon.
- MeSH
- Apicomplexa klasifikace genetika izolace a purifikace MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- parazitární nemoci u zvířat parazitologie MeSH
- protozoální DNA genetika MeSH
- Ranidae parazitologie MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
Records from a colubrid host are reported for Hepatozoon horridus, described originally from a viperid snake. Hepatozoon horridus in Pantherophis guttatus (Colubridae) has gamonts 14-18.0 by 4.0-5.5 microm, with length by width (LW) 60-99 microm2, and L/W ratio 2.5-3.9. Spherical to elongate, usually ovoid oocysts with L/W ratio 1.0-3.7 contain 16-160 spherical to usually ovoid sporocysts 15-31 by 14-26 microm, with L/W ratio 1.0-1.4, that contain 5-24 sporozoites. Two additional Hepatozoon species are described from ratsnakes in north Florida. Hepatozoon quadrivittata n. sp. from Pantherophis obsoletus quadrivittatus has gamonts 12-17 by 4-6 microm, LW 56-102 microm2, and L/W ratio 2.6-3.8. Nearly spherical oocysts with L/W 1.0-1.1 contain 5-227 spherical to slightly ovoid sporocysts 20-48 by 19-45 microm, with L/W ratio 1.0-1.4, that contain 13-48 sporozoites. Hepatozoon spiloides n. sp. from Pantherophis obsoletus spiloides forms gamonts 12-15 by 4-5 microm with LW 48-75 microm2 and L/W ratio 2.6-3.5. Occasionally rounded but usually elongate oocysts, with L/W ratio 1.0-2.7, contain 5-21 spherical to elongate sporocysts 28-43 by 18-35 microm, L/W ratio 2.5-3.9. In the distinctive Hepatozoon sp. present in Pantherophis obsoletus spiloides, gamonts are 13-17 by 5-10 microm, with LW 75-140 microm2 and L/W ratio 1.4-3.0. Infected erythrocytes are always distorted and enlarged on average 2.5 times the size of uninfected cells, with nuclei enlarged by one-third and broadly elongated. Gamonts often stained deep blue, and cytoplasm of erythrocytes infected with mature gamonts was always dehemoglobinized. Sporogony could not be obtained in three feedings by hundreds of Aedes aegypti, which usually died within the first 24-48 hr.
- MeSH
- Apicomplexa klasifikace cytologie izolace a purifikace MeSH
- hadi parazitologie MeSH
- protozoální infekce zvířat epidemiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Florida epidemiologie MeSH
Warbler species of the families Sylviidae and Acrocephalidae occurring in the Danube river delta are frequently exposed to blood-sucking arthropods that transmit avian blood parasites. We investigated infections by three genera of hemosporidian parasites in blood samples from six warbler species. Altogether in 17 (32.6%) of 52 blood samples, a PCR product was amplified. The great reed warbler (Acrocephalus arundinaceus) had the highest prevalence, with 63.6% (7/11) infected individuals, whereas no infection was detected in marsh warbler (Acrocephalus palustris). The most common parasite genus was Haemoproteus, which was found in 15.4% (8/52) of individuals. Seven known parasite lineages (five Haemoproteus and two Plasmodium) and two new lineages were recorded (one Leucocytozoon and one Plasmodium).
- MeSH
- Apicomplexa izolace a purifikace MeSH
- ekosystém * MeSH
- nemoci ptáků krev epidemiologie parazitologie MeSH
- parazitární nemoci u zvířat krev epidemiologie parazitologie MeSH
- Passeriformes * MeSH
- prevalence MeSH
- protozoální infekce krev epidemiologie MeSH
- řeky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo epidemiologie MeSH
Hyalomma aegyptium ticks were collected from tortoises, Testudo graeca, at localities in northern Africa, the Balkans, and the Near and Middle East. The intensity of infestation ranged from 1-37 ticks per tortoise. The sex ratio of feeding ticks was male-biased in all tested populations. Larger tortoises carried more ticks than did the smaller tortoises. The juveniles were either not infested, or carried only a poor tick load. Hyalomma aegyptium was absent in the western Souss Valley and Ourika Valley in Morocco, the Cyrenaica Peninsula in Libya, Jordan, and the Antilebanon Mountains in Syria. Hemolivia mauritanica, a heteroxenous apicomplexan cycling between T. graeca and H. aegyptium, was confirmed in Algeria, Romania, Turkey, Syria, Lebanon, and Iran. Its prevalence ranged from 84% in Romania (n = 45), 82% in eastern Turkey (n = 28), and 82% in the area of northwestern Syria with adjacent Turkish borderland (n = 90), to 38% in Lebanon (n = 8) and in only 1 of 16 sampled tortoises in Algeria. The intensity of parasitemia in the studied areas ranged from 0.01% up to 28.17%. The percentage of Hemolivia-infected erythrocytes was significantly higher in adults. All tortoises from Hyalomma-free areas were Hemolivia-negative. Remarkably, all 29 T. graeca from Jabal Duruz (southwestern Syria) and 36 T. graeca from the area north of Middle Atlas (Morocco) were Hemolivia-negative, despite the fact that ticks parasitized all adult tortoises in these localities. Identical host preferences of H. aegyptium and H. mauritanica suggest the occurrence of co-evolution within the Testudo-Hyalomma-Hemolivia host-parasite complex.
- MeSH
- analýza rozptylu MeSH
- Apicomplexa izolace a purifikace fyziologie MeSH
- arachnida jako vektory parazitologie MeSH
- infestace klíšťaty epidemiologie veterinární MeSH
- interakce hostitele a parazita MeSH
- Ixodidae parazitologie MeSH
- poměr pohlaví MeSH
- prevalence MeSH
- protozoální infekce zvířat epidemiologie parazitologie přenos MeSH
- želvy parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rumunsko epidemiologie MeSH
- severní Afrika epidemiologie MeSH
- Střední východ epidemiologie MeSH
Two experimental trials were performed to elucidate the role of rodents in the life cycle of Hepatozoon species using snakes as intermediate hosts. In one trial, two ball pythons, Python regius Shaw, 1802 were force fed livers of laboratory mice previously inoculated with sporocysts of Hepatozoon ayorgbor Sloboda, Kamler, Bulantová, Votýpka et Modrý, 2007. Transmission was successful in these experimentally infected snakes as evidenced by the appearance of intraerythrocytic gamonts, which persisted until the end of trial, 12 months after inoculation. Developmental stages of haemogregarines were not observed in histological sections from mice. In another experimental trial, a presence of haemogregarine DNA in mice inoculated with H. ayorgbor was demonstrated by PCR in the liver, lungs and spleen.
- MeSH
- Apicomplexa izolace a purifikace MeSH
- Boidae parazitologie MeSH
- erytrocyty parazitologie MeSH
- hlodavci parazitologie MeSH
- infekce přenášené vektorem * MeSH
- játra parazitologie MeSH
- myši MeSH
- plíce parazitologie MeSH
- polymerázová řetězová reakce metody MeSH
- protozoální DNA izolace a purifikace MeSH
- protozoální infekce zvířat přenos MeSH
- slezina parazitologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH