INTRODUCTION: Central nervous system (CNS) involvement in diffuse large B-cell lymphoma (DLBCL) is a rare but serious condition requiring accurate diagnostics. Cerebrospinal fluid (CSF) analysis plays a crucial role, particularly in cases where biopsy is not feasible, and imaging is inconclusive. AREAS COVERED: Chemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including circulating tumor DNA (ctDNA) analysis and microRNAs (miRNAs), are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data.This review examines both traditional and emerging methods for CSF analysis in diagnosing CNS involvement in DLBCL. Conventional approaches such as cytomorphology, flow cytometry, and biochemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including ctDNA analysis and miRNAs, are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data. EXPERT OPINION: Advancements in CSF biomarker analysis are improving the diagnosis of CNS lymphoma, aiding early detection and personalized treatment approaches. However, further research and broader clinical validation are necessary for their routine implementation.
- Klíčová slova
- IL-10, MYD88, Primary CNS lymphoma (PNSCL), cerebrospinal fluid (CSF), circulating tumor DNA (ctDNA), cytomorphology, flow cytometry (FCM), secondary CNS lymphoma (SCNCSL),
- MeSH
- cirkulující nádorová DNA mozkomíšní mok genetika MeSH
- diagnostické techniky molekulární metody MeSH
- difúzní velkobuněčný B-lymfom * diagnóza mozkomíšní mok genetika patologie MeSH
- interleukin-10 genetika mozkomíšní mok MeSH
- lidé MeSH
- meningeální nádory * diagnóza mozkomíšní mok genetika MeSH
- mikro RNA genetika mozkomíšní mok MeSH
- mutace MeSH
- myeloidní diferenciační faktor 88 genetika MeSH
- nádorové biomarkery * mozkomíšní mok genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
- interleukin-10 MeSH
- mikro RNA MeSH
- MYD88 protein, human MeSH Prohlížeč
- myeloidní diferenciační faktor 88 MeSH
- nádorové biomarkery * MeSH
High-grade B-cell lymphomas (HGBCLs) are aggressive blood cancers with a severe disease course, especially when the central nervous system (CNS) is involved. Standard histological examination depends on tissue availability and is currently supplemented with molecular tests, as the status of MYC, BCL2, or BCL6 gene rearrangements is required for proper lymphoma classification. This case report demonstrates the relevance of cerebrospinal fluid (CSF) cell-free DNA testing by integrative next-generation sequencing (NGS) panel. The benefit of this approach resided in tumor genotyping alongside the proof of CNS progression despite MRI negativity, revealing a clonal relationship with the primary tumor lesion. In addition, our strategy allowed us to classify the tumor as DLBCL/HGBL-MYC/BCL2 entity. In clinical practice, such a minimally invasive approach provides a more sensitive tool than standard imaging and cell analyzing techniques, enabling more accurate disease monitoring and relapse prediction in particular cases.
- Klíčová slova
- Cell-free DNA, Central nervous system involvement, High-grade B-cell lymphoma, Integrative diagnostics, Next-generation sequencing,
- MeSH
- B-buněčný lymfom * genetika patologie MeSH
- cirkulující nádorová DNA * genetika mozkomíšní mok MeSH
- difúzní velkobuněčný B-lymfom * genetika patologie mozkomíšní mok diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokální recidiva nádoru genetika patologie MeSH
- magnetická rezonanční tomografie MeSH
- nádorové biomarkery * genetika mozkomíšní mok MeSH
- nádory centrálního nervového systému * genetika patologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- cirkulující nádorová DNA * MeSH
- nádorové biomarkery * MeSH
Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management. However, the optimal strategy for monitoring gliomas by LB remains to be determined. In this study, we analyzed circulating tumor DNA (ctDNA) from 78 liquid biopsies (plasma n = 44, cerebrospinal fluid n = 34 (CSF)) of 35 glioma patients, determining H3F3A K28M (K27M) and BRAF V600E mutation allele frequency using droplet digital PCR (ddPCR). All results were correlated to clinically relevant parameters including diagnostic imaging and CSF aspiration site (ventricular vs lumbar) with respect to tumor localization. Regarding diagnostic accuracy, the calculated sensitivity score in the H3F3A K27M cohort was 84.61% for CSF and 73.68% for plasma. In the BRAF V600E cohort, we determined a sensitivity of 83.3% in plasma and 80% in CSF. The overall specificity was 100%. With respect to the CSF aspiration, the intra-operatively obtained CSF demonstrated 100% detection rate, followed by ventricular CSF obtained via Ommaya Reservoir/shunt puncture (93%) and CSF obtained via lumbar puncture (66%). Notably, this further correlated with the proximity of the CSF site to tumor localization. Longitudinal CSF monitoring demonstrated a good correlation to clinical and radiological disease evolution. Importantly, we show for the first time that monitoring BRAF V600E by ddPCR could serve as treatment response assessment in gliomas. In summary, our observation may inform recommendations with regard to location of CSF aspiration when incorporating LB into future treatment protocols.
- Klíčová slova
- CSF sampling site, Droplet digital PCR, Glioma, Liquid biopsy, Longitudinal monitoring, Targeted therapy,
- MeSH
- cirkulující nádorová DNA mozkomíšní mok genetika MeSH
- dítě MeSH
- dospělí MeSH
- gliom * genetika patologie diagnóza MeSH
- histony * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- nádorové biomarkery * genetika mozkomíšní mok MeSH
- nádory mozku * genetika diagnóza patologie MeSH
- předškolní dítě MeSH
- protoonkogenní proteiny B-Raf * genetika MeSH
- tekutá biopsie metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRAF protein, human MeSH Prohlížeč
- cirkulující nádorová DNA MeSH
- H3-3A protein, human MeSH Prohlížeč
- histony * MeSH
- nádorové biomarkery * MeSH
- protoonkogenní proteiny B-Raf * MeSH
Backround: Although central nervous system (CNS) tumors are not the most common cancers, their incidence rate is constantly growing. Unfortunately, this group of cancers is characterized by a very poor prognosis with a very short average patient survival. Appropriate therapy depends on early and accurate diagnosis. However, this is often limited by brain tumor localization and heterogeneity. Therefore, new diagnostic approaches and biomarkers that are robust, sensitive, specific, and also without need of invasive biopsy, are still being sought. Cerebrospinal fluid (CSF) comes into direct contact with the CNS and becomes a suitable source of biological material that could reflect actual state of CNS. Suitable molecules in this regard appear to be microRNAs (miRNAs), short non-coding RNAs, that have been already detected in CSF and whose dysregulated levels are associated with various types of brain tumors. Purpose: Unfortunately, the methodical approaches used for CSF miRNA analysis have not been sufficiently standardized yet. For this reason, we summarize and evaluate methodical approaches which were previously used for miRNA analysis from CSF in order to find the most appropriate ones. Subsequently, we review studies focused on miRNA with potential to become biomarkers of CNS tumors in the future. Supported by Ministry of Health of the Czech Republic, grants No. 15-34553A and 15-33158A. All rights reserved. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 3. 1. 2019 Accepted: 3. 1. 2019.
- Klíčová slova
- biomarkers, brain tumors, cerebrospinal fluid, microRNAs,
- MeSH
- lidé MeSH
- mikro RNA mozkomíšní mok MeSH
- nádorové biomarkery mozkomíšní mok genetika MeSH
- nádory mozku genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- nádorové biomarkery MeSH
BACKGROUNDS: Deregulated levels of miRNAs, short noncoding RNAs associated with pathogenesis of many diseases, have been observed in cerebrospinal fluid (CSF). Therefore, the analysis of CSF miRNAs in patients affected by tumors of central nervous system (CNS) might help to develop new diagnostic platform enabling more precise diagnosis. Thus, in our study we tried to optimize methodical approaches to be used for miRNA detection as RNA isolation and selection of suitable technology for global high-throughput miRNA profiling. MATERIAL AND METHODS: In the optimization phase of RNA isolation from CSF, various commercially available kits with different protocol modifications were compared. Two quantitative polymerase chain reaction panels and Next Generation Sequencing method were tested for selection of the most suitable method for miRNA comprehensive profiling. RESULTS: The Urine miRNA Purification kit (Norgen) and Next Generation Sequencing was selected as the most suitable kit for RNA extraction from CSF and method for miRNA comprehensive profiling, resp. CONCLUSION: We established a protocol for RNA isolation and miRNA comprehensive profiling in CSF clinical specimens.Key words: brain neoplasm - cerebrospinal fluid - microRNA The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. This study was supported by Ministry of Health of the Czech Republic, grant No. 15-34553A. All rights reserved.Submitted: 19. 3. 2018Accepted: 10. 4. 2018.
- MeSH
- lidé MeSH
- mikro RNA mozkomíšní mok MeSH
- nádorové biomarkery mozkomíšní mok genetika MeSH
- nádory centrálního nervového systému mozkomíšní mok genetika MeSH
- polymerázová řetězová reakce MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
- nádorové biomarkery MeSH
Cerebrospinal fluid (CSF) is a body fluid that has many important functions and is in direct contact with the extracellular environment of the central nervous system (CNS). CSF serves as both the communication channel allowing the distribution of various substances among the CNS cells and the storage facility for the waste products these cells release. For these reasons, CSF is a potential source of diagnostic biomarkers of many CNS diseases, including brain tumors. Recent studies have revealed that CSF also contains circulating microRNAs (miRNAs), short non-coding RNAs that have been described as biomarkers in many cancers. However, CSF miRNAs are difficult to detect, which is why researchers face major challenges, including technological difficulties in its detection and its lack of standardization. Therefore, this review aims (i) to highlight the potential of CSF miRNAs as diagnostic, prognostic and predictive biomarkers in brain tumors, and (ii) to summarize technological approaches for detection of CSF miRNAs.
- Klíčová slova
- biomarker, brain cancer, cerebrospinal fluid (CSF), diagnosis, microRNA, prognosis,
- MeSH
- lidé MeSH
- mikro RNA mozkomíšní mok MeSH
- nádorové biomarkery mozkomíšní mok MeSH
- nádory mozku mozkomíšní mok diagnóza MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- nádorové biomarkery MeSH