Most cited article - PubMed ID 10069007
In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli
Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.
- Keywords
- Oxidative stress response, Pathogen evolution, Pathogenesis, Tellurite resistance gene cluster, Uropathogenic Escherichia coli,
- MeSH
- Escherichia coli * MeSH
- Multigene Family MeSH
- Oxidative Stress MeSH
- Tellurium * pharmacology metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- tellurous acid MeSH Browser
- Tellurium * MeSH
The subject of this review covers modern experimental procedures for chromosomal gene replacement in Escherichia coli and related bacteria, which enable the specific substitution of targeted genome sequences with copies of those carrying defined mutations. Two principal methods for gene replacement were established. The first "in-out" method is based on integration of plasmid into bacterial chromosome and subsequent resolving of the cointegrate. The "linear fragment" method (recombineering) is based on homologous recombination mediated by short homology arms at the ends of linear DNA molecule. Many new protocols and improvements in targeted gene replacement were introduced during the last 10 years. These methods are well suited for high-throughput functional gene studies and for many biotechnological applications.