Nejvíce citovaný článek - PubMed ID 11206551
Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.
- Klíčová slova
- Oxidative stress response, Pathogen evolution, Pathogenesis, Tellurite resistance gene cluster, Uropathogenic Escherichia coli,
- MeSH
- Escherichia coli * MeSH
- multigenová rodina MeSH
- oxidační stres MeSH
- telur * farmakologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tellurous acid MeSH Prohlížeč
- telur * MeSH
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.
- Klíčová slova
- adhesins, flagella, lipid rafts, phospholipids,
- MeSH
- bakteriální adheze * MeSH
- buněčná membrána chemie MeSH
- buněčné linie MeSH
- buňky HT-29 MeSH
- epitelové buňky mikrobiologie MeSH
- Escherichia coli O157 fyziologie MeSH
- flagella metabolismus MeSH
- fosfolipidy analýza MeSH
- interakce hostitele a patogenu * MeSH
- kyselina alfa-linolenová analýza MeSH
- kyselina palmitová analýza MeSH
- lidé MeSH
- membránové mikrodomény chemie MeSH
- unilamelární lipozómy chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
- kyselina alfa-linolenová MeSH
- kyselina palmitová MeSH
- unilamelární lipozómy MeSH
BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H-, the most common non-O157 serotype causing hemolytic uremic syndrome worldwide, are evolutionarily highly dynamic with new pathogenic clones emerging rapidly. Here, we investigated the population structure of EHEC O26 isolated from patients in several European countries using whole genome sequencing, with emphasis on a detailed analysis of strains of the highly virulent new European clone (nEC) which has spread since 1990s. RESULTS: Genome-wide single nucleotide polymorphism (SNP)-based analysis of 32 EHEC O26 isolated in the Czech Republic, Germany, Austria and Italy demonstrated a split of the nEC (ST29C2 clonal group) into two distinct lineages, which we termed, based on their temporal emergence, as "early" nEC and "late" nEC. The evolutionary divergence of the early nEC and late nEC is marked by the presence of 59 and 70 lineage-specific SNPs (synapomorphic mutations) in the genomes of the respective lineages. In silico analyses of publicly available E. coli O26 genomic sequences identified the late nEC lineage worldwide. Using a PCR designed to target the late nEC synapomorphic mutation in the sen/ent gene, we identified the early nEC decline accompanied by the late nEC rise in Germany and the Czech Republic since 2004 and 2013, respectively. Most of the late nEC strains harbor one of two major types of Shiga toxin 2a (Stx2a)-encoding prophages. The type I stx2a-phage is virtually identical to stx2a-phage of EHEC O104:H4 outbreak strain, whereas the type II stx2a-phage is a hybrid of EHEC O104:H4 and EHEC O157:H7 stx2a-phages and carries a novel mutation in Stx2a. Strains harboring these two phage types do not differ by the amounts and biological activities of Stx2a produced. CONCLUSIONS: Using SNP-level analyses, we provide the evidence of the evolutionary split of EHEC O26:H11/H- nEC into two distinct lineages, and a recent replacement of the early nEC by the late nEC in Germany and the Czech Republic. PCR targeting the late nEC synapomorphic mutation in ent/sen enables the discrimination of early nEC strains and late nEC strains in clinical and environmental samples, thereby facilitating further investigations of their geographic distribution, prevalence, clinical significance and epidemiology.
- Klíčová slova
- Enterohemorrhagic Escherichia coli (EHEC), New European clone, O26, Shiga toxin,
- MeSH
- biologická evoluce * MeSH
- DNA bakterií MeSH
- enterohemoragická Escherichia coli klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom bakteriální * MeSH
- genomika MeSH
- infekce vyvolané Escherichia coli diagnóza epidemiologie mikrobiologie MeSH
- lidé MeSH
- molekulární epidemiologie MeSH
- sekvenování celého genomu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
BACKGROUND: Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. RESULTS: We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. CONCLUSION: Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA restrikčně-modifikační enzymy genetika metabolismus MeSH
- Escherichia coli enzymologie genetika MeSH
- genomika MeSH
- proteiny z Escherichia coli genetika metabolismus MeSH
- protilátky bakteriální metabolismus MeSH
- restrikční endonukleasy typu I genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- sekvenční seřazení MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA restrikčně-modifikační enzymy MeSH
- HsdM protein, Bacteria MeSH Prohlížeč
- HsdR protein, E coli MeSH Prohlížeč
- proteiny z Escherichia coli MeSH
- protilátky bakteriální MeSH
- restrikční endonukleasy typu I MeSH
Three strains of Escherichia fergusonii (EF873, EF1496, EF939) of 50 strains tested produced the hydroxamate siderophore aerobactin. Screening of a cosmid library of the strain EF873 chromosomal DNA (in aerobactin nonproducing Escherichia coli VCS257) for aerobactin production identified iucABCD and iutA gene orthologues. The predicted IucABCD and IutA proteins showed 59-65% identity to the corresponding proteins of Shigella flexneri and E. coli. Aerobactin molecules synthesized by E. fergusonii and E. coli strains stimulated growth of aerobactin indicator strains harboring either E. coli or E. fergusonii iutA genes. In the 12 kb upstream and 17 kb downstream regions of the iuc and iut genes, 20 additional ORFs were identified. Their gene products showed homology to proteins from E. coli, S. flexneri, Klebsiella aerogenes, Pseudomonas aeruginosa and Vibrio cholerae. Probes recognizing DNA sequences from a region of more than 25 kb, which included the iucABCD and iutA genes, hybridized with chromosomal DNA of two aerobactin-producing strains (EF873 and EF939), but not with other nonproducing E. fergusonii strains tested. These data, together with the genetic organization of this region, suggest that E. fergusonii iucABCD iutA genes are a portion of a larger segment of DNA similar to pathogenicity islands of other bacteria.
- MeSH
- bakteriální chromozomy genetika MeSH
- Escherichia genetika metabolismus patogenita MeSH
- genomová knihovna MeSH
- inzerční mutageneze MeSH
- kosmidy MeSH
- kyseliny hydroxamové metabolismus MeSH
- mapování chromozomů * MeSH
- molekulární sekvence - údaje MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- proteiny z Escherichia coli genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Southernův blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- aerobactin receptor MeSH Prohlížeč
- aerobactin MeSH Prohlížeč
- kyseliny hydroxamové MeSH
- proteiny vnější bakteriální membrány MeSH
- proteiny z Escherichia coli MeSH