Nejvíce citovaný článek - PubMed ID 10371034
Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3'UTR regions and characterise the Kozak sequence in the 5'UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.
- Klíčová slova
- Monocercomonoides, amitochondriate, genome, nanopore,
- MeSH
- anotace sekvence MeSH
- délka genomu MeSH
- nanoporové sekvenování MeSH
- Oxymonadida klasifikace genetika MeSH
- protozoální proteiny genetika MeSH
- regulace genové exprese MeSH
- sekvenování celého genomu metody MeSH
- stanovení celkové genové exprese metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.
Termination codons in mRNA molecules are typically specified directly by the sequence of the corresponding gene. However, in mitochondria of a few eukaryotic groups, some mRNAs contain the termination codon UAA deriving one or both adenosines from transcript polyadenylation. Here, we show that a similar phenomenon occurs for a substantial number of nuclear genes in Blastocystis spp., divergent unicellular eukaryote gut parasites. Our analyses of published genomic data from Blastocystis sp. subtype 7 revealed that polyadenylation-mediated creation of termination codons occurs in approximately 15% of all nuclear genes. As this phenomenon has not been noticed before, the procedure previously employed to annotate the Blastocystis nuclear genome sequence failed to correctly define the structure of the 3'-ends of hundreds of genes. From sequence data we have obtained from the distantly related Blastocystis sp. subtype 1 strain, we show that this phenomenon is widespread within the Blastocystis genus. Polyadenylation in Blastocystis appears to be directed by a conserved GU-rich element located four nucleotides downstream of the polyadenylation site. Thus, the highly precise positioning of the polyadenylation in Blastocystis has allowed reduction of the 3'-untranslated regions to the point that, in many genes, only one or two nucleotides of the termination codon are left.
- Klíčová slova
- Blastocystis, evolution, gene expression, mRNA processing, polyadenylation, termination codons, translation,
- MeSH
- Blastocystis chemie genetika MeSH
- blastocystóza parazitologie MeSH
- lidé MeSH
- messenger RNA chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- polyadenylace * MeSH
- protozoální proteiny chemie genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- terminační kodon chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- protozoální proteiny MeSH
- terminační kodon MeSH
In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.
- MeSH
- Arabidopsis genetika MeSH
- genetická transkripce * MeSH
- intergenová DNA * MeSH
- malá interferující RNA metabolismus MeSH
- messenger RNA metabolismus MeSH
- modely genetické MeSH
- molekulární sekvence - údaje MeSH
- polyadenylace * MeSH
- regulace genové exprese u rostlin * MeSH
- RNA ribozomální 5S genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intergenová DNA * MeSH
- malá interferující RNA MeSH
- messenger RNA MeSH
- RNA ribozomální 5S MeSH