Nejvíce citovaný článek - PubMed ID 10441304
Pathogens significantly influence natural and agricultural ecosystems, playing a crucial role in the regulation of species populations and maintaining biodiversity. Entomopathogenic fungi (EF), particularly within the Hypocreales order, exemplify understudied pathogens that infect insects and other arthropods globally. Despite their ecological importance, comprehensive data on EF host specificity and geographical distribution are lacking. To address this, we present EntomoFun 1.0, an open-access database centralizing global records of EF-insect associations in Hypocreales. This database includes 1,791 records detailing EF species, insect host taxa, countries of occurrence, life stages of hosts, and information sources. EntomoFun 1.0 is constructed based on 600 literature sources, as well as herbarium specimens of the Royal Botanical Gardens, Kew. This database is intended to test hypotheses, identify knowledge gaps, and stimulate future research. Contents of the EntomoFun 1.0 database are visualized with a global map, taxonomic chart, bipartite community network, and graphs.
BACKGROUND: The host specificity of fish parasites is considered a useful parasite characteristic with respect to understanding the biogeography of their fish hosts. Dactylogyrus Diesing, 1850 (Monogenea) includes common parasites of cyprinids exhibiting different degrees of host specificity, i.e. from strict specialism to generalism. The phylogenetic relationships and historical dispersions of several cyprinid lineages, including Aulopyge huegelii Heckel, 1843, are still unclear. Therefore, the aims of our study were to investigate (i) the Dactylogyrus spp. parasites of A. huegelii, and (ii) the phylogenetic relationships of Dactylogyrus spp. parasitizing A. huegelii as a possible tool for understanding the phylogenetic position of this fish species within the Cyprininae lineage. RESULTS: Two species of Dactylogyrus, D. vastator Nybelin, 1924 and D. omenti n. sp., were collected from 14 specimens of A. huegelii from the Šujica River (Bosnia and Herzegovina). While D. vastator is a typical species parasitizing Carassius spp. and Cyprinus carpio L, D. omenti n. sp. is, according to phylogenetic reconstruction, closely related to Dactylogyrus species infecting European species of Barbus and Luciobarbus. The genetic distance revealed that the sequence for D. vastator from A. huegelii is identical with that for D. vastator from Barbus plebejus Bonaparte, 1839 (Italy) and Carassius gibelio (Bloch, 1782) (Croatia). Dactylogyrus omenti n. sp. was described as a species new to science. CONCLUSIONS: Our findings support the phylogenetic position of A. huegelii within the Cyprininae lineage and suggest that A. huegelii is phylogenetically closely related to Barbus and Luciobarbus species. The morphological similarity between D. omenti n. sp. and Dactylogyrus species of Middle Eastern Barbus suggests historical contact between cyprinid species recently living in allopatry and the possible diversification of A. huegelii from a common ancestor in this area. On other hand, the genetic similarity between D. vastator ex A. huegelii and D. vastator ex C. gibelio collected in Balkan Peninsula suggests that A. huegelii was secondarily parasitized by D. vastator, originating from C. gibelio after introduction of this fish species from Asia to Europe.
- Klíčová slova
- Aulopyge, Coevolution, Cyprininae, Dactylogyrus, Host specificity, Phylogeography,
- MeSH
- Cyprinidae klasifikace parazitologie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- hostitelská specificita * MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- nemoci ryb parazitologie MeSH
- Trematoda klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Bosna a Hercegovina MeSH
- Chorvatsko MeSH
- Itálie MeSH
BACKGROUND: The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. METHODS: We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. RESULTS: No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites' attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. CONCLUSIONS: Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that parental care behavior of cichlids may play an important role linked to host specificity of Cichlidogyrus/Scutogyrus parasites.
- MeSH
- biologická evoluce MeSH
- cichlidy parazitologie MeSH
- fylogeneze MeSH
- hostitelská specificita * MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- interakce hostitele a parazita * MeSH
- nemoci ryb parazitologie MeSH
- ploštěnci genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH