Nejvíce citovaný článek - PubMed ID 11097877
UNLABELLED: We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, "Candidatus Pandoraea novymonadis" sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. IMPORTANCE: The parasitic trypanosomatid protist Novymonas esmeraldas gen. nov., sp. nov. entered into endosymbiosis with the bacterium "Ca. Pandoraea novymonadis" sp. nov. This novel and rather unstable interaction shows several signs of relatively recent establishment, qualifying it as a potentially unique transient stage in the increasingly complex range of eukaryotic-prokaryotic relationships.
- MeSH
- Burkholderiaceae klasifikace cytologie izolace a purifikace fyziologie MeSH
- fylogeneze MeSH
- symbióza * MeSH
- Trypanosomatina klasifikace cytologie genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ekvádor MeSH
The phylogenetic composition, bacterial biomass, and biovolume of both planktonic and biofilm communities were studied in a low-order Bystřice stream near Olomouc City, in the Czech Republic. The aim of the study was to compare the microbial communities colonizing different biofilm substrata (stream aggregates, stream sediment, underwater tree roots, stream stones, and aquatic macrophytes) to those of free-living bacteria. The phylogenetic composition was analyzed using fluorescence in situ hybridization for main phylogenetic groups. All phylogenetic groups studied were detected in all sample types. The stream stone was the substratum where nearly all phylogenetic groups were the most abundant, while the lowest proportion to the DAPI-stained cells was found for free-living bacteria. The probe specific for the domain Bacteria detected 20.6 to 45.8 % of DAPI-stained cells while the probe specific for the domain Archaea detected 4.3 to 17.9 %. The most abundant group of Proteobacteria was Alphaproteobacteria with a mean of 14.2 %, and the least abundant was Betaproteobacteria with a mean of 11.4 %. The average value of the Cytophaga-Flavobacteria group was 10.5 %. Total cell numbers and bacterial biomass were highest in sediment and root biofilm. The value of cell biovolume was highest in stone biofilm and lowest in sediment. Overall, this study revealed relevant differences in phylogenetic composition, bacterial biomass, and biovolume between different stream biofilms and free-living bacteria.
- MeSH
- Archaea klasifikace genetika izolace a purifikace MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biofilmy * MeSH
- biomasa MeSH
- chemické jevy MeSH
- fylogeneze * MeSH
- geologické sedimenty mikrobiologie MeSH
- hybridizace in situ fluorescenční MeSH
- řeky mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH