Nejvíce citovaný článek - PubMed ID 11244613
Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet
Studies from the last decades indicate that increased levels of ammonia contribute to muscle wasting in critically ill patients. The aim of the article is to examine the effects of two different causes of hyperammonemia-increased ATP degradation in muscles during strenuous exercise and impaired ammonia detoxification to urea due to liver cirrhosis. During exercise, glycolysis, citric acid cycle (CAC) activity, and ATP synthesis in muscles increase. In cirrhosis, due to insulin resistance and mitochondrial dysfunction, glycolysis, CAC activity, and ATP synthesis in muscles are impaired. Both during exercise and in liver cirrhosis, there is increased ammonia detoxification to glutamine (Glu + NH3 + ATP → Gln + ADP + Pi), increased drain of ketoglutarate (α-KG) from CAC for glutamate synthesis by α-KG-linked aminotransferases, glutamate, aspartate, and α-KG deficiency, increased oxidation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine), and protein-energy wasting in muscles. It is concluded that ammonia can contribute to muscle wasting regardless of the cause of its increased levels and that similar strategies can be designed to increase muscle performance in athletes and reduce muscle loss in patients with hyperammonemia. The pros and cons of glutamate, α-KG, aspartate, BCAA, and branched-chain keto acid supplementation are discussed.
- Klíčová slova
- branched-chain amino acids, glutamic acid, glutamine, hyperammonemia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In hyperammonemic states, such as liver cirrhosis, urea cycle disorders, and strenuous exercise, the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) is activated and BCAA concentrations decrease. In these conditions, BCAAs are recommended to improve mental functions, protein balance, and muscle performance. However, clinical trials have not demonstrated significant benefits of BCAA-containing supplements. It is hypothesized that, under hyperammonemic conditions, enhanced glutamine availability and decreased BCAA levels facilitate the amination of branched-chain keto acids (BCKAs; α-ketoisocaproate, α-keto-β-methylvalerate, and α-ketoisovalerate) to the corresponding BCAAs, and that BCKA supplementation may offer advantages over BCAAs. Studies examining the effects of ketoanalogues of amino acids have provided proof that subjects with hyperammonemia can effectively synthesize BCAAs from BCKAs. Unfortunately, the benefits of BCKA administration have not been clearly confirmed. The shortcoming of most reports is the use of mixtures intended for patients with renal insufficiency, which might be detrimental for patients with liver injury. It is concluded that (i) BCKA administration may decrease ammonia production, attenuate cataplerosis, correct amino acid imbalance, and improve protein balance and (ii) studies specifically investigating the effects of BCKA, without the interference of other ketoanalogues, are needed to complete the information essential for decisions regarding their suitability in hyperammonemic conditions.
- Klíčová slova
- exercise, glutamine, liver cirrhosis, urea-cycle disorders, α-ketoglutarate,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.
Muscle wasting is a serious complication of various clinical conditions that significantly worsens the prognosis of the illnesses. Clinically relevant models of muscle wasting are essential for understanding its pathogenesis and for selective preclinical testing of potential therapeutic agents. The data presented here indicate that muscle wasting has been well characterized in rat models of sepsis (endotoxaemia, and caecal ligation and puncture), in rat models of chronic renal failure (partial nephrectomy), in animal models of intensive care unit patients (corticosteroid treatment combined with peripheral denervation or with administration of neuromuscular blocking drugs) and in murine and rat models of cancer (tumour cell transplantation). There is a need to explore genetically engineered mouse models of cancer. The degree of protein degradation in skeletal muscle is not well characterized in animal models of liver cirrhosis, chronic heart failure and chronic obstructive pulmonary disease. The major difficulties with all models are standardization and high variation in disease progression and a lack of reflection of clinical reality in some of the models. The translation of the information obtained by using these models to clinical practice may be problematic.
- MeSH
- kosterní svaly metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádory komplikace metabolismus patologie MeSH
- proteolýza MeSH
- sepse komplikace metabolismus patologie MeSH
- svalová atrofie etiologie metabolismus patologie MeSH
- syndrom chřadnutí etiologie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) are elevated in chronic kidney disease (CKD) and may contribute to vascular complications. In this study we tested the hypothesis that elevated ADMA can be reduced in obese CKD patients by long-term administration of a low-protein diet supplemented with keto-amino acids. PATIENTS AND METHODS: In a long-term prospective double-blind placebo-controlled randomized trial, we evaluated for a period of 36 months a total of 111 CKD patients (54 men, 57 women) aged 22-76 years with obesity (BMI >or= 30 kg/m(2)) and an inulin clearance rate (C(in)) of 22-40 ml/min/1.73 m(2). All patients were on a low-protein diet containing 0.6 g protein/kg BW per day and 120-125 kJ/kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day (66 patients, Group I); 65 patients received placebo (Group II). RESULTS: During the study period, the glomerular filtration rate decreased slightly in Group I (C(in) from 32.4 +/- 12.6 to 29.8 +/- 8.6 ml/min/1.73 m(2)) and more markedly in Group II (from 33.2 +/- 12.6 to 23.2 +/- 98.4 ml/min/1.73 m(2), P < 0.01). BMI decreased significantly in Group I (from 32.0 +/- 3.3 to 26.1 +/- 4.0 kg/m(2), P < 0.01) and was linked to reduced volume of visceral fat measured by MRI (P < 0.01). Reduction of BMI in Group II was not significant. In Group I, there was a significant decrease in the plasma level of ADMA (from 2.5 +/- 0.5 to 1.3 +/- 0.4 micromol/l, P < 0.01), but ADMA remained unchanged in Group II. A further remarkable finding in Group I was reduction in the plasma concentration of pentosidine (from 480 +/- 170 to 320 +/- 120 microg/l, P < 0.01) and decrease of proteinuria (from 3.8 +/- 2.24 to 1.6 +/- 1.0 g/24 h, P < 0.02). Plasma adiponectin rose in Group I (P < 0.01). Analysis of the lipid spectrum revealed a mild but significant decrease in total cholesterol and LPD-cholesterol (P < 0.02), more pronounced in Group I. There was also a decrease in plasma triglycerides in Group I (from 3.9 +/- 1.6 down to 2.2 +/- 0.6 mmol/l, P < 0.01) and a decrease in glycated hemoglobin (from 7.2 +/- 1.4% to 4.2 +/- 0.8%, P < 0.02). CONCLUSION: Compared with the placebo group, long term co-administration of a low-protein diet and keto-amino acids in CKD patients with obesity led to decreases of ADMA, visceral body fat and proteinuria. Concomitant decreases of glycated hemoglobin, LDL-cholesterol and pentosidine may also contribute to the delay in progression of renal failure.
- MeSH
- aminokyseliny aplikace a dávkování MeSH
- arginin analogy a deriváty krev MeSH
- chronické selhání ledvin krev farmakoterapie MeSH
- dospělí MeSH
- ketokyseliny aplikace a dávkování MeSH
- kombinovaná terapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nízkoproteinová dieta metody MeSH
- obezita krev farmakoterapie MeSH
- potravní doplňky MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH
- ketokyseliny MeSH
- N,N-dimethylarginine MeSH Prohlížeč