Most cited article - PubMed ID 11279186
Different recognition of DNA modified by aatitumor cisplatin and its clinically ineffective trans isomer by tumor suppressor protein p53
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
- Keywords
- local DNA structures, p53 protein, protein-DNA interactions,
- MeSH
- DNA, B-Form MeSH
- DNA chemistry genetics metabolism MeSH
- Nucleic Acid Conformation * MeSH
- Humans MeSH
- Tumor Suppressor Protein p53 chemistry metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA, B-Form MeSH
- DNA MeSH
- Tumor Suppressor Protein p53 MeSH
- triplex DNA MeSH Browser
The trinuclear platinum agent BBR3464, a representative of a new class of anticancer drugs, is more potent than conventional mononuclear cisplatin [cis-diamminedichloroplatinum(II)]. BBR3464 retains significant activity in human tumor cell lines and xenografts that are refractory or poorly responsive to cisplatin, and displays a high activity in human tumor cell lines that are characterized by both wild-type and mutant p53 gene. In contrast, on average, cells with mutant p53 are more resistant to the effect of cisplatin. It has been hypothesized that the sensitivity or resistance of tumor cells to cisplatin might be also associated with cell cycle control and repair processes that involve p53. DNA is a major pharmacological target of platinum compounds and DNA binding activity of the p53 protein is crucial for its tumor suppressor function. This study, using gel-mobility-shift assays, was undertaken to examine the interactions of active and latent p53 protein with DNA fragments and oligodeoxyribonucleotide duplexes modified by BBR3464 in a cell free medium and to compare these results with those describing the interactions of these proteins with DNA modified by cisplatin. The results indicate that structurally different DNA adducts of BBR3464 and cisplatin exhibit a different efficiency to affect the binding affinity of the modified DNA to p53 protein. It has been suggested that different structural perturbations induced in DNA by the adducts of BBR3464 and cisplatin produce a differential response to p53 protein activation and recognition and that a 'molecular approach' to control of downstream effects such as protein recognition and pathways of apoptosis induction may consist in design of structurally unique DNA adducts as cell signals.
- MeSH
- DNA Adducts chemistry drug effects genetics metabolism MeSH
- Cisplatin chemistry pharmacology MeSH
- Consensus Sequence genetics MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- Organoplatinum Compounds chemistry pharmacology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Response Elements genetics MeSH
- Base Sequence MeSH
- Substrate Specificity MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Names of Substances
- DNA Adducts MeSH
- BBR 3464 MeSH Browser
- Cisplatin MeSH
- Tumor Suppressor Protein p53 MeSH
- Organoplatinum Compounds MeSH
- Antineoplastic Agents MeSH