Nejvíce citovaný článek - PubMed ID 11596532
Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
- Klíčová slova
- Brain plasticity, Dystonia, Network disorder, Neurophysiology,
- MeSH
- dystonické poruchy * MeSH
- dystonie * MeSH
- lidé MeSH
- mozeček MeSH
- mozková kůra MeSH
- neurofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
We studied whether the cognitive event-related potentials (ERP) in the subthalamic nucleus (STN) are modified by the modulation of the inferior frontal cortex (IFC) and the dorsolateral prefrontal cortex (DLPFC) with repetitive transcranial magnetic stimulation (rTMS). Eighteen patients with Parkinson's disease who had been implanted with a deep brain stimulation (DBS) electrode were included in the study. The ERPs were recorded from the DBS electrode before and after the rTMS (1 Hz, 600 pulses) over either the right IFC (10 patients) or the right DLPFC (8 patients). The ERPs were generated by auditory stimuli. rTMS over the right IFC led to a shortening of ERP latencies from 277 +/- 14 ms (SD) to 252 +/- 19 ms in the standard protocol and from 296 +/- 17 ms to 270 +/- 20 ms in the protocol modified by a higher load of executive functions (both P < 0.01). The application of rTMS over the DLPFC and the sham stimulation over the IFC showed no significant changes. The shortening of ERP latency after rTMS over the right IFC reflected the increase in the speed of the cognitive process. The rTMS modulation of activity of the DLPFC did not influence the ERP. Connections (the IFC-STN hyperdirect pathway) with the cortex that bypass the BG-thalamocortical circuitries could explain the position of the STN in the processing of executive functions.
- MeSH
- akustická stimulace MeSH
- analýza rozptylu MeSH
- čelní lalok patofyziologie MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- exekutivní funkce fyziologie MeSH
- implantované elektrody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování mozku MeSH
- nervové dráhy patofyziologie MeSH
- nucleus subthalamicus patofyziologie MeSH
- Parkinsonova nemoc patofyziologie MeSH
- počítačové zpracování signálu MeSH
- psychomotorický výkon fyziologie MeSH
- reakční čas MeSH
- sluchová percepce fyziologie MeSH
- transkraniální magnetická stimulace metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To analyze the distribution of the cortical electrical activity related to self-paced voluntary movements, i.e. the movement-related readiness potentials (Bereitschaftspotential, BP) and the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms using intracerebral recordings. EEG was recorded in 14 epilepsy surgery candidates during preoperative video-stereo-EEG monitoring. Subjects performed self-paced hand movements, with their right and left fingers in succession. EEG signals were obtained from a total of 501 contacts using depth electrodes located in primary and nonprimary cortical regions. In accordance with previous studies, BP was found consistently in the primary motor (M1) and somatosensory (S1) cortex, the supplementary motor area (SMA), and in a few recordings also in the cingulate cortex and in the dorsolateral prefrontal and premotor cortex. ERD and ERS of alpha and beta rhythms were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than the distribution of those showing BP. In contrast to BP, ERD and ERS frequently occurred in the lateral and mesial temporal cortex and the inferior parietal lobule. The number of contacts and cortical regions showing ERD and ERS and not BP suggests that the two electrophysiological phenomena are differently involved in the preparation and execution of simple voluntary movements. Substantial differences between BP and ERD in spatial distribution and the widespread topography of ERD/ERS in temporal and higher-order motor regions suggest that oscillatory cortical changes are coupled with cognitive processes supporting movement tasks, such as memory, time interval estimation, and attention.
- MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- epilepsie patofyziologie MeSH
- evokované potenciály fyziologie MeSH
- funkční lateralita MeSH
- lidé MeSH
- mapování mozku MeSH
- mladiství MeSH
- mozek patofyziologie MeSH
- pohybová aktivita fyziologie MeSH
- supinační poloha MeSH
- záchvaty klasifikace patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The spatial location of activation for writing individual letters and for writing simple dots was studied using event-related functional MRI. Ten healthy right-handed subjects were scanned while performing two different protocols with self-paced repetitive movement. In the first protocol with self-paced dot writing, we observed significant activation in regions known to participate in motor control: contralateral to the movement in the primary sensorimotor and supramarginal cortices, the supplementary motor area (SMA) with the underlying cingulate, in the thalamus and, to a lesser extent, in the ipsilateral inferior parietal and occipital cortices. In the second protocol, we investigated an elemental writing feature--writing single letters. We observed statistically significant changes in the premotor, sensorimotor and supramarginal cortices, the SMA and the thalamus with left predominance, and in the bilateral premotor and inferior/superior parietal cortices. The parietal region that was active during the writing of single letters spanned the border between the parietal superior and inferior lobuli Brodmann area (BA 2, 40), deep in the intraparietal sulcus, with a surprising right-sided dominance. The direct comparison of the results of the two protocols was not significant with a confidence level of P<0.05 corrected for whole brain volume. Thus, the ROI approach was used, and we tried to find significant differences within the two predefined regions of interest (ROI) (BA 7, BA 37). The differences were found with a confidence level of P<0.05 corrected for the volume of these predicted areas. The ROI were located in the posterior parts of hemispheres, in the ventral and in the dorsal visual pathway. The right-sided posterior cortices may play a role in the elemental mechanisms of writing. It is possible that activation of this region is linked with the spatial dimension of the writing.
- MeSH
- dospělí MeSH
- funkční lateralita MeSH
- kyslík krev MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mapování mozku MeSH
- počítačové zpracování obrazu metody MeSH
- psaní * MeSH
- psychomotorický výkon fyziologie MeSH
- temenní lalok krevní zásobení fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- kyslík MeSH