Most cited article - PubMed ID 11719957
Genetic characterization of six species of diplozoids (Monogenea; Diplozoidae)
The freshwaters of Iraq harbour a high diversity of endemic and phylogenetically unique species. One of the most diversified fish groups in this region is cyprinoids, and although their distribution is relatively well known, their monogenean parasites have only rarely been investigated. Herein, we applied an integrative approach, combining morphology with molecular data, to assess the diversity and phylogeny of cyprinoid-associated monogenean parasites. A total of 33 monogenean species were collected and identified from 13 endemic cyprinoid species. The highest species diversity was recorded for Dactylogyrus (Dactylogyridae, 16 species) and Gyrodactylus (Gyrodactylidae, 12 species). Four species of Dactylogyrus and 12 species of Gyrodactylus were identified as new to science and described. Two other genera, Dogielius (Dactylogyridae) and Paradiplozoon (Diplozoidae), were represented only by 4 and 1 species, respectively. Phylogenetic analyses of the Dactylogyrus and Gyrodactylus species revealed that the local congeners do not form a monophyletic group and are phylogenetically closely related to species from other regions (i.e. Europe, North Africa and Eastern Asia). These findings support the assumption that the Middle East served as an important historical crossroads for the interchange of fauna between these 3 geographic regions.
- Keywords
- Cyprinoidei, Dactylogyrus, Dogielius, Gyrodactylus, Middle East, Paradiplozoon, phylogeny, species diversity,
- MeSH
- Phylogeny MeSH
- Fishes MeSH
- Trematoda * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Iraq epidemiology MeSH
- Africa, Northern MeSH
- Middle East MeSH
Diplozoidae are common monogenean ectoparasites of cyprinoid fish, with the genus Paradiplozoon being the most diversified. Despite recent studies on Diplozoidae from Europe, Africa and Asia, the diversity, distribution and phylogeny of this parasite group appears to be still underestimated in the Middle East. The objective of this study was to investigate the diversity, endemism and host specificity of diplozoids parasitizing cyprinoid fish from the Middle East, considering this region as an important historical interchange of fish fauna, and to elucidate the phylogenetic position of Middle Eastern Paradiplozoon species within Diplozoidae. Four Paradiplozoon species were collected from 48 out of 94 investigated cyprinoid species. Three known species, Paradiplozoon homoion, Paradiplozoon bliccae and Paradiplozoon bingolensis, were recorded on new cyprinoid host species, and a new species, Paradiplozoon koubkovae n. sp., was recorded on Luciobarbus capito and Capoeta capoeta from the Caspian Sea basin in Iran and Turkey. Paradiplozoon bliccae, exhibiting a wide host range in the Middle East, expressed both morphological and genetic intraspecific variabilities. The four Paradiplozoon species collected in the Middle East were placed in divergent clades, showing the rich evolutionary history of diplozoid parasites in the Middle East. Our study also revealed that two lineages of African diplozoids have a Middle Eastern origin. We stress the importance of applying an integrative approach combining morphological, ecological and molecular methods to reveal the real diversity of diplozoids.
- Keywords
- Cyprinoidei, evolutionary history, host specificity, parasite fauna, phylogeography,
- MeSH
- Biological Evolution MeSH
- Cyprinidae * MeSH
- Phylogeny MeSH
- Trematoda * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Turkey epidemiology MeSH
BACKGROUND: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). RESULTS: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). CONCLUSIONS: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.
- Keywords
- Annotation, Assembly, Eudiplozoon nipponicum, Mass spectrometry, Monogenea, NGS, Secretome, Transcriptome,
- MeSH
- Molecular Sequence Annotation MeSH
- Chromatography, Liquid MeSH
- Phylogeny MeSH
- Carps * genetics MeSH
- Gene Expression Profiling MeSH
- Tandem Mass Spectrometry MeSH
- Transcriptome MeSH
- Trematoda * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The Diplozoidae are monogenean parasites of mainly cyprinoid fishes with a unique life cycle, whereby two larvae undergo anastomosis and fuse into a single cross-shaped specimen. Paradiplozoon is the most species rich and widespread genus of the family, with a distribution range covering Eurasia and Africa; however, some areas remain underexplored and their diplozoid fauna is uncertain. In the present study, the Paradiplozoon diversity was investigated in the peri-Mediterranean region, which has the highest levels of cyprinoid diversity and endemism in Europe. A total of 36 endemic cyprinoid species were sampled from sites in north-west Africa and the southern European peninsulas and investigated for the presence of diplozoid parasites. Of five Paradiplozoon species collected, three were identified as new to science: Paradiplozoon moroccoensis n. sp. from the Moroccan endemic Luciobarbus lepineyi; Paradiplozoon ibericus n. sp. from Iberian endemic cyprinids and leuciscids and Paradiplozoon helleni n. sp. from the Greek endemic Scardinius acarnicus and Tropidophoxinellus hellenicus (descriptions provided herein). In addition, new host records for P. homoion and P. megan are presented, with the former being most prevalent in the investigated region. Phylogenetic analysis supported paraphyly of the genus Paradiplozoon, and suggests the need for a careful taxonomic re-evaluation of this genus. Furthermore, the results showed that endemic Paradiplozoon of the peri-Mediterranean do not form a monophyletic group, suggesting multiple origins of this parasite groups in different peri-Mediterranean regions.
- Keywords
- Africa, Cyprinoidei, Europe, Paradiplozoon, Phylogeny, Species diversity,
- MeSH
- Biodiversity MeSH
- Cyprinidae parasitology MeSH
- Phylogeny * MeSH
- Trematode Infections parasitology veterinary MeSH
- Life Cycle Stages MeSH
- Trematoda classification growth & development isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa, Northern MeSH
- Mediterranean Region MeSH
BACKGROUND: Serpins are a superfamily of serine peptidase inhibitors that participate in the regulation of many physiological and cell peptidase-mediated processes in all organisms (e.g. in blood clotting, complement activation, fibrinolysis, inflammation, and programmed cell death). It was postulated that in the blood-feeding members of the monogenean family Diplozoidae, serpins could play an important role in the prevention of thrombus formation, activation of complement, inflammation in the host, and/or in the endogenous regulation of protein degradation. RESULTS: In silico analysis showed that the DNA and primary protein structures of serpin from Eudiplozoon nipponicum (EnSerp1) are similar to other members of the serpin superfamily. The inhibitory potential of EnSerp1 on four physiologically-relevant serine peptidases (trypsin, factor Xa, kallikrein, and plasmin) was demonstrated and its presence in the worm's excretory-secretory products (ESPs) was confirmed. CONCLUSION: EnSerp1 influences the activity of peptidases that play a role in blood coagulation, fibrinolysis, and complement activation. This inhibitory potential, together with the serpin's presence in ESPs, suggests that it is likely involved in host-parasite interactions and could be one of the molecules involved in the control of feeding and prevention of inflammatory responses.
Contexte : Les serpines sont une super-famille d’inhibiteurs de sérine peptidases qui participent, dans tous les organismes, à la régulation de nombreux processus physiologiques et à médiation par les peptidases cellulaires (par exemple la coagulation sanguine, l’activation du complément, la fibrinolyse, l’inflammation et la mort cellulaire programmée). Il a été postulé que chez les Monogènes de la famille Diplozoidae, qui sont hématophages, les serpines pourraient jouer un rôle important dans la prévention de la formation de thrombus, l’activation du complément, l’inflammation chez l’hôte et/ou la régulation endogène de la dégradation des protéines. Résultats : Une analyse in silico a montré que l’ADN et les structures primaires protéiques de la serpine d’Eudiplozoon nipponicum (EnSerp1) sont similaires aux autres membres de la superfamille des serpines. Le potentiel inhibiteur d’EnSerp1 sur quatre sérine peptidases physiologiquement pertinentes (la trypsine, le facteur Xa, la kallikréine et la plasmine) a été démontré et sa présence dans les produits excréteurs de sécrétion du ver (ESP) a été confirmée. Conclusion : EnSerp1 influence l’activité des peptidases qui jouent un rôle dans la coagulation sanguine, la fibrinolyse et l’activation du complément. Ce potentiel inhibiteur, ainsi que la présence de la serpine dans les ESP, suggèrent qu’elle est probablement impliquée dans les interactions hôte-parasite et pourrait être l’une des molécules impliquées dans le contrôle de l’alimentation et la prévention des réponses inflammatoires.
- MeSH
- DNA, Helminth chemistry MeSH
- Phylogeny MeSH
- Trematode Infections parasitology veterinary MeSH
- Serine Proteinase Inhibitors chemistry genetics isolation & purification metabolism MeSH
- Carps parasitology MeSH
- Fish Diseases parasitology MeSH
- Computer Simulation MeSH
- Polymerase Chain Reaction MeSH
- Recombinant Proteins genetics isolation & purification metabolism MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Serpins chemistry genetics isolation & purification metabolism MeSH
- Trematoda chemistry classification enzymology genetics MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Helminth MeSH
- Serine Proteinase Inhibitors MeSH
- Recombinant Proteins MeSH
- Serpins MeSH
BACKGROUND: Cysteine peptidases of clan CA, family C1 account for a major part of proteolytic activity in the haematophagous monogenean Eudiplozoon nipponicum. The full spectrum of cysteine cathepsins is, however, unknown and their particular biochemical properties, tissue localisation, and involvement in parasite-host relationships are yet to be explored. METHODS: Sequences of cathepsins L and B (EnCL and EnCB) were mined from E. nipponicum transcriptome and analysed bioinformatically. Genes encoding two EnCLs and one EnCB were cloned and recombinant proteins produced in vitro. The enzymes were purified by chromatography and their activity towards selected substrates was characterised. Antibodies and specific RNA probes were employed for localisation of the enzymes/transcripts in tissues of E. nipponicum adults. RESULTS: Transcriptomic analysis revealed a set of ten distinct transcripts that encode EnCLs. The enzymes are significantly variable in their active sites, specifically the S2 subsites responsible for interaction with substrates. Some of them display unusual structural features that resemble cathepsins B and S. Two recombinant EnCLs had different pH activity profiles against both synthetic and macromolecular substrates, and were able to hydrolyse blood proteins and collagen I. They were localised in the haematin cells of the worm's digestive tract and in gut lumen. The EnCB showed similarity with cathepsin B2 of Schistosoma mansoni. It displays molecular features typical of cathepsins B, including an occluding loop responsible for its exopeptidase activity. Although the EnCB hydrolysed haemoglobin in vitro, it was localised in the vitelline cells of the parasite and not the digestive tract. CONCLUSIONS: To our knowledge, this study represents the first complex bioinformatic and biochemical characterisation of cysteine peptidases in a monogenean. Eudiplozoon nipponicum adults express a variety of CLs, which are the most abundant peptidases in the worms. The properties and localisation of the two heterologously expressed EnCLs indicate a central role in the (partially extracellular?) digestion of host blood proteins. High variability of substrate-binding sites in the set of EnCLs suggests specific adaptation to a range of biological processes that require proteolysis. Surprisingly, a single cathepsin B is expressed by the parasite and it is not involved in digestion, but probably in vitellogenesis.
- Keywords
- Blood digestion, Cathepsin, Cysteine peptidase, Diplozoidae, Eudiplozoon nipponicum, Fish parasite, Haematophagy, Monogenea, Protease, S2 subsite,
- MeSH
- Gastrointestinal Tract parasitology MeSH
- Hydrolysis MeSH
- Host-Parasite Interactions MeSH
- Carps parasitology MeSH
- Cathepsin B chemistry genetics isolation & purification metabolism MeSH
- Cathepsin L chemistry genetics isolation & purification metabolism MeSH
- Proteolysis MeSH
- Recombinant Proteins analysis genetics isolation & purification MeSH
- Gene Expression Profiling MeSH
- Trematoda enzymology genetics MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cathepsin B MeSH
- Cathepsin L MeSH
- Recombinant Proteins MeSH
Paradiplozoon hemiculteri (Ling, 1973), a member of the Diplozoidae, parasitizes the gills of Asian fish. Not only is the type material unavailable for this species, the original description was poor and somewhat conflicting, and adequate molecular data were not available. What is more, the available morphological and molecular data are inconsistent and fluctuate significantly. Here, we present a redescription of P. hemiculteri based on morphological and molecular data from new isolates collected from the type host, the sharpbelly Hemiculter leucisculus (Basilewsky, 1855), captured at the neotype locality (Shaoguan, Guangdong Province, southern China); a neotype for P. hemiculteri was designated from this collection. The length and width of the body, buccal suckers, pharynx, attachment clamps, sickle and the central hook handle were all measured and the shape of the anterior and posterior part of the median plate and anterior and posterior joining sclerites accurately documented. Phylogenetic analyses based on the sequences of the second rDNA internal transcribed spacer (ITS2) indicated that all new samples clustered together and differed clearly from sequences attributed to P. hemiculteri, which are deposited in GenBank. Our results confirm that P. hemiculteri is the only diplozoid that has demonstrably been found on the gills of H. leucisculus to date.
Paradiplozoon hemiculteri (Ling, 1973), membre des Diplozoidae, parasite les branchies des poissons asiatiques. Non seulement le matériel-type n’est pas disponible pour cette espèce, mais la description originale était médiocre et quelque peu contradictoire, et des données moléculaires adéquates n’étaient pas disponibles. Qui plus est, les données morphologiques et moléculaires disponibles sont incohérentes et fluctuent de manière significative. Ici, nous présentons une nouvelle description de P. hemiculteri basée sur des données morphologiques et moléculaires provenant de nouveaux isolats recueillis chez l’hôte-type, Hemiculter leucisculus (Basilewsky, 1855), capturé à la localité du néotype (Shaoguan, province du Guangdong, sud de la Chine); un néotype pour P. hemiculteri a été désigné à partir de cette collection. La longueur et la largeur du corps, les ventouses buccales, le pharynx, les pinces, la faucille et la poignée centrale ont été mesurés et la forme de la partie antérieure et postérieure de la plaque médiane et des sclérites antérieurs et postérieurs bien documentée. Des analyses phylogénétiques basées sur les séquences du second espaceur transcrit interne de l’ADNr (ITS2) ont indiqué que tous les nouveaux échantillons étaient regroupés et différaient clairement des séquences attribuées à P. hemiculteri qui sont déposées dans GenBank. Nos résultats confirment que P. hemiculteri est le seul Diplozoidae qui ait été trouvé sur les branchies de H. leucisculus à ce jour.
- MeSH
- Cyprinidae parasitology MeSH
- DNA, Helminth chemistry MeSH
- Phylogeny * MeSH
- Trematode Infections epidemiology parasitology veterinary MeSH
- DNA, Ribosomal Spacer chemistry MeSH
- Fish Diseases epidemiology parasitology MeSH
- Trematoda classification genetics isolation & purification MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China epidemiology MeSH
- Names of Substances
- DNA, Helminth MeSH
- DNA, Ribosomal Spacer MeSH
Diplozoidae (Monogenea) are blood-feeding freshwater fish gill ectoparasites with extraordinary body architecture and a unique sexual behaviour in which two larval worms fuse and transform into one functioning individual. In this study, we describe the body organisation of Paradiplozoon homoion adult stage using a combined approach of confocal laser scanning and electron microscopy, with emphasis on the forebody and hindbody. Special attention is given to structures involved in functional adaptation to ectoparasitism, i.e. host searching, attachment and feeding/metabolism. Our observations indicate clear adaptations for blood sucking, with a well-innervated mouth opening surrounded by sensory structures, prominent muscular buccal suckers and a pharynx. The buccal cavity surface is covered with numerous tegumentary digitations that increase the area in contact with host tissue and, subsequently, with its blood. The buccal suckers and the well-innervated haptor (with sclerotised clamps controlled by noticeable musculature) cooperate in attaching to and moving over the host. Putative gland cells accumulate in the region of apical circular structures, pharynx area and in the haptor middle region. Paired club-shaped sacs lying laterally to the pharynx might serve as secretory reservoirs. Furthermore, we were able to visualise the body wall musculature, including peripheral innervation, the distribution of uniciliated sensory structures essential for reception of external environmental information, and flame cells involved in excretion. Our results confirm in detail that P. homoion displays a range of sophisticated adaptations to an ectoparasitic life style, characteristic for diplozoid monogeneans.
- MeSH
- Ectoparasitic Infestations parasitology MeSH
- Host-Parasite Interactions MeSH
- Microscopy, Confocal MeSH
- Microscopy, Electron, Scanning MeSH
- Platyhelminths anatomy & histology pathogenicity MeSH
- Fishes parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Diplozoons are representatives of blood-feeding ectoparasites from the family Diplozoidae (Polyopisthocotylea, Monogenea). Although these worms have been the subject of numerous taxonomical, phylogenetic, and ecological studies, the detailed study of their excretory system has remained relatively neglected. Our observations focused on the morphological and ultrastructural features of the excretory apparatus of four diplozoid species: Diplozoon paradoxum, Eudiplozoon nipponicum, Paradiplozoon bliccae, and Paradiplozoon homoion. Observations were obtained using two microscope methods: light microscopy, equipped with differential interference contrast (Nomarski DIC) and transmission electron microscopy (TEM). The ultrastructure of two basic compartments which forms the excretory apparatus, flame cells with filtration apparatus, and canal cells forming the protonephridial ducts is revealed in this study. A unique consecutive sequence of longitudinal semi-thin sections of the excretory pore of E. nipponicum is visualized there for the first time.
- Keywords
- Diplozoidae, Excretory system, Flame cell, Monogenea, Protonephridia, Ultrastructure,
- MeSH
- Species Specificity MeSH
- Trematoda ultrastructure MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Paradiplozoon homoion is a representative of blood-feeding ectoparasites from the family Diplozoidae (Polyopisthocotylea, Monogenea). Although these worms have been the subject of numerous taxonomical, phylogenetic and ecological studies, the ultrastructure of the alimentary system and related structures, as well as the mechanisms of essential processes like fish blood digestion, remain mostly unknown. Our observation of P. homoion using a transmission electron microscopy (TEM) revealed two main types of digestive cells-U-shaped haematin cells and connecting syncytium. Particular structures such as mouth cavity with specialised receptors, two oval-shaped muscular buccal suckers, pharynx surrounded with the glandular cells, oesophagus, the intestinal caeca with intact erythrocytes in the lumen, the apical pinocytotic fibrous surface complex and haematin vesicles of U-shaped cells have been shown in detail. According to our results, the P. homoion is degrading the blood components predominantly intracellularly.