Nejvíce citovaný článek - PubMed ID 12002264
Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- akademie a ústavy * dějiny MeSH
- biomedicínský výzkum * dějiny trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- fyziologie dějiny MeSH
- kardiologie dějiny trendy MeSH
- lidé MeSH
- srdce fyziologie MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
The role of opioid kappa1 and kappa2 receptors in reperfusion cardiac injury was studied. Male Wistar rats were subjected to a 45-min coronary artery occlusion followed by a 120-min reperfusion. Opioid kappa receptor agonists were administered intravenously 5 min before the onset of reperfusion, while opioid receptor antagonists were given 10 min before reperfusion. The average value of the infarct size/area at risk (IS/AAR) ratio was 43 - 48% in untreated rats. Administration of the opioid kappa1 receptor agonist (-)-U-50,488 (1 mg/kg) limited the IS/AAR ratio by 42%. Administration of the opioid kappa receptor agonist ICI 199,441 (0.1 mg/kg) limited the IS/AAR ratio by 41%. The non-selective opioid kappa receptor agonist (+)-U-50,488 (1 mg/kg) with low affinity for opioid kappa receptor, the peripherally acting opioid kappa2 receptor agonist ICI 204,448 (4 mg/kg) and the selective opioid ?2 receptor agonist GR89696 (0.1 mg/kg) had no effect on the IS/AAR ratio. Pretreatment with naltrexone, the peripherally acting opioid receptor antagonist naloxone methiodide, or the selective opioid kappa2 receptor antagonist nor-binaltorphimine completely abolished the infarct-reducing effect of (-)-U-50,488 and ICI 199,441. Pretreatment with the selective opioid ? receptor antagonist TIPP[psi] and the selective opioid µ receptor antagonist CTAP did not alter the infarct reducing effect of (-)-U-50,488 and ICI 199,441. Our study is the first to demonstrate the following: (a) the activation of opioid kappa2 receptor has no effect on cardiac tolerance to reperfusion; (b) peripheral opioid kappa1 receptor stimulation prevents reperfusion cardiac injury; (c) ICI 199,441 administration resulted in an infarct-reducing effect at reperfusion; (e) bradycardia induced by opioid kappa receptor antagonists is not dependent on the occupancy of opioid kappa receptor.
- MeSH
- 3,4-dichlor-N-methyl-N-(2-(1-pyrrolidinyl)-cyklohexyl)-benzenacetamid, (trans)-isomer aplikace a dávkování toxicita MeSH
- infarkt myokardu metabolismus patologie prevence a kontrola MeSH
- intravenózní podání MeSH
- kardiomyocyty účinky léků metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- narkotika - antagonisté aplikace a dávkování MeSH
- opioidní analgetika aplikace a dávkování toxicita MeSH
- piperaziny aplikace a dávkování MeSH
- potkani Wistar MeSH
- pyrrolidiny aplikace a dávkování toxicita MeSH
- receptory opiátové kappa agonisté metabolismus MeSH
- reperfuzní poškození myokardu metabolismus patologie prevence a kontrola MeSH
- signální transdukce MeSH
- srdeční arytmie chemicky indukované patofyziologie MeSH
- srdeční frekvence účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- 3,4-dichlor-N-methyl-N-(2-(1-pyrrolidinyl)-cyklohexyl)-benzenacetamid, (trans)-isomer MeSH
- GR 89696 MeSH Prohlížeč
- ICI 199441 MeSH Prohlížeč
- kappa(1) opioid receptor MeSH Prohlížeč
- kappa(2) opioid receptor MeSH Prohlížeč
- narkotika - antagonisté MeSH
- opioidní analgetika MeSH
- piperaziny MeSH
- pyrrolidiny MeSH
- receptory opiátové kappa MeSH
Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.
- Klíčová slova
- blood pressure, epoxyeicosatrienoic acid, heart failure, myocardial infarction, spontaneously hypertensive rat,
- MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- infarkt myokardu farmakoterapie genetika metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kyseliny arachidonové aplikace a dávkování chemie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední SHR MeSH
- srdce patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hemoxygenasa-1 MeSH
- kyseliny arachidonové MeSH
The present study was undertaken to evaluate the effects of chronic treatment with c-AUCB {cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid}, a novel inhibitor of sEH (soluble epoxide hydrolase), which is responsible for the conversion of biologically active EETs (epoxyeicosatrienoic acids) into biologically inactive DHETEs (dihydroxyeicosatrienoic acids), on BP (blood pressure) and myocardial infarct size in male heterozygous TGR (Ren-2 renin transgenic rats) with established hypertension. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. Myocardial ischaemia was induced by coronary artery occlusion. Systolic BP was measured in conscious animals by tail plethysmography. c-AUCB was administrated in drinking water. Renal and myocardial concentrations of EETs and DHETEs served as markers of internal production of epoxygenase metabolites. Chronic treatment with c-AUCB, which resulted in significant increases in the availability of biologically active epoxygenase metabolites in TGR (assessed as the ratio of EETs to DHETEs), was accompanied by a significant reduction in BP and a significantly reduced infarct size in TGR as compared with untreated TGR. The cardioprotective action of c-AUCB treatment was completely prevented by acute administration of a selective EETs antagonist [14,15-epoxyeicosa-5(Z)-enoic acid], supporting the notion that the improved cardiac ischaemic tolerance conferred by sEH inhibition is mediated by EETs actions at the cellular level. These findings indicate that chronic inhibition of sEH exhibits antihypertensive and cardioprotective actions in this transgenic model of angiotensin II-dependent hypertension.
- MeSH
- angiotensin II fyziologie MeSH
- antihypertenziva farmakologie MeSH
- benzoáty farmakologie MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze farmakoterapie genetika metabolismus MeSH
- ikosanoidy metabolismus moč MeSH
- infarkt myokardu farmakoterapie patologie MeSH
- kardiotonika farmakologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- močovina analogy a deriváty farmakologie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- srdeční arytmie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Prohlížeč
- angiotensin II MeSH
- antihypertenziva MeSH
- benzoáty MeSH
- epoxid hydrolasy MeSH
- ikosanoidy MeSH
- kardiotonika MeSH
- močovina MeSH
CD36 fatty acid translocase plays a key role in supplying heart with its major energy substrate, long-chain fatty acids (FA). Previously, we found that the spontaneously hypertensive rat (SHR) harbors a deletion variant of Cd36 gene that results in reduced transport of long-chain FA into cardiomyocytes and predisposes the SHR to cardiac hypertrophy. In the current study, we analyzed the effects of mutant Cd36 on susceptibility to ischemic ventricular arrhythmias and myocardial infarction in adult SHR-Cd36 transgenic rats with wild-type Cd36 compared with age-matched SHR controls. Using an open-chest model of coronary artery occlusion, we found that SHR-Cd36 transgenic rats showed profound arrhythmogenesis resulting in significantly increased duration of tachyarrhythmias (207 ± 48 s vs. 55 ± 21 s, P < 0.05), total number of premature ventricular complexes (2,623 ± 517 vs. 849 ± 250, P < 0.05) and arrhythmia score (3.86 ± 0.18 vs. 3.13 ± 0.13, P < 0.001). On the other hand, transgenic SHR compared with SHR controls showed significantly reduced infarct size (52.6 ± 4.3% vs. 72.4 ± 2.9% of area at risk, P < 0.001). Similar differences were observed in isolated perfused hearts, and the increased susceptibility of transgenic SHR to arrhythmias was abolished by reserpine, suggesting the involvement of catecholamines. To further search for possible molecular mechanisms of altered ischemic tolerance, we compared gene expression profiles in left ventricles dissected from 6-wk-old transgenic SHR vs. age-matched controls using Illumina-based sequencing. Circadian rhythms and oxidative phosphorylation were identified as the top KEGG pathways, while circadian rhythms, VDR/RXR activation, IGF1 signaling, and HMGB1 signaling were the top IPA canonical pathways potentially important for Cd36-mediated effects on ischemic tolerance. It can be concluded that transgenic expression of Cd36 plays an important role in modulating the incidence and severity of ischemic and reperfusion ventricular arrhythmias and myocardial infarct size induced by coronary artery occlusion. The proarrhythmic effect of Cd36 transgene appears to be dependent on adrenergic stimulation.
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- genetická predispozice k nemoci MeSH
- infarkt myokardu genetika metabolismus patologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR MeSH
- srdeční arytmie genetika metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny CD36 MeSH
UNLABELLED: Different from clinical studies of diabetes mellitus (DM), experimental data reveal both, higher and lower vulnerability of the heart to ischemic injury. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in isolated rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge to the effects of DM of different duration on myocardial infarction, in conjunction with susceptibility to arrhythmias, in the in vivo model. DM was induced by streptozotocin (45 mg/kg, i.v.) and following 1 week (acute phase) and 8 weeks (chronic phase), anesthetized open-chest diabetic and age-matched control rats were subjected to 30-min regional ischemia (occlusion of LAD coronary artery) followed by 4-h reperfusion for the evaluation of the infarct size (tetrazolium staining). In the control rats, ventricular tachycardia (VT) represented 45.4% of total arrhythmias and occurred in 90% of the animals. In the acute phase of DM, arrhythmia profile was similar to that in the control animals, and the incidence and severity of arrhythmias were not enhanced. On the other hand, the size of infarct area normalized to the size of area at risk was significantly smaller in the diabetics than in the controls (47.2 +/- 2.8 vs. 70.2 +/- 2.1%, respectively; p < 0.05). In the chronic phase, only 17.7% of arrhythmias occurred as VT in 44% of the diabetics (p < 0.05 vs. controls). Severity of arrhythmias was also lower (arrhythmia score: 2.1 +/- 0.3 vs. 2.9 +/- 0.3 in the controls, respectively; p < 0.05). This effect was not due to a smaller infarct size, since the latter did not differ from that in the controls. IN CONCLUSION: diabetic rat hearts exhibit rather lower, than higher sensitivity to ischemia. In acute phase of DM, diabetic hearts are more resistant to irreversible cell damage, whereas in the chronic phase they exhibit reduced susceptibility to arrhythmias; these discrepancies might reflect different pathogenesis of arrhythmias and myocardial infarction.
- MeSH
- experimentální diabetes mellitus komplikace patofyziologie MeSH
- infarkt myokardu patofyziologie MeSH
- ischemická choroba srdeční patofyziologie MeSH
- krysa rodu Rattus MeSH
- náchylnost k nemoci MeSH
- potkani Wistar MeSH
- srdce patofyziologie MeSH
- srdeční arytmie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH