Most cited article - PubMed ID 12021386
Quantitation of mRNAs for M(1) to M(5) subtypes of muscarinic receptors in rat heart and brain cortex
Muscarinic acetylcholine receptors are metabotropic G-protein coupled receptors. Muscarinic receptors in the cardiovascular system play a central role in its regulation. Particularly M2 receptors slow down the heart rate by reducing the impulse conductivity through the atrioventricular node. In general, activation of muscarinic receptors has sedative effects on the cardiovascular system, including vasodilation, negative chronotropic and inotropic effects on the heart, and cardioprotective effects, including antifibrillatory effects. First, we review the signaling of individual subtypes of muscarinic receptors and their involvement in the physiology and pathology of the cardiovascular system. Then we review age and disease-related changes in signaling via muscarinic receptors in the cardiovascular system. Finally, we review molecular mechanisms involved in cardioprotection mediated by muscarinic receptors leading to negative chronotropic and inotropic and antifibrillatory effects on heart and vasodilation, like activation of acetylcholine-gated inward-rectifier K+-currents and endothelium-dependent and -independent vasodilation. We relate this knowledge with well-established cardioprotective treatments by vagal stimulation and muscarinic agonists. It is well known that estrogen exerts cardioprotective effects against atherosclerosis and ischemia-reperfusion injury. Recently, some sex hormones and neurosteroids have been shown to allosterically modulate muscarinic receptors. Thus, we outline possible treatment by steroid-based positive allosteric modulators of acetylcholine as a novel pharmacotherapeutic tactic. Keywords: Muscarinic receptors, Muscarinic agonists, Allosteric modulation, Cardiovascular system, Cardioprotection, Steroids.
- MeSH
- Muscarinic Agonists pharmacology MeSH
- Cardiotonic Agents pharmacology therapeutic use MeSH
- Humans MeSH
- Receptors, Muscarinic * metabolism MeSH
- Vasodilation physiology drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Muscarinic Agonists MeSH
- Cardiotonic Agents MeSH
- Receptors, Muscarinic * MeSH
BACKGROUND: Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS: We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
- Keywords
- Acetylcholine, acetylcholinesterase, muscarinic receptor subtypes, pharmacotherapy,
- MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Receptor Cross-Talk drug effects MeSH
- Humans MeSH
- Receptors, Muscarinic drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Receptors, Muscarinic MeSH
We investigated the influence of membrane cholesterol content on preferential and non-preferential signaling through the M(2) muscarinic acetylcholine receptor expressed in CHO cells. Cholesterol depletion by 39% significantly decreased the affinity of M(2) receptors for [(3)H]-N-methylscopolamine ([(3)H]-NMS) binding and increased B(max) in intact cells and membranes. Membranes displayed two-affinity agonist binding sites for carbachol and cholesterol depletion doubled the fraction of high-affinity binding sites. In intact cells it also reduced the rate of agonist-induced receptor internalization and changed the profile of agonist binding from a single site to two affinity states. Cholesterol enrichment by 137% had no effects on carbachol E(max) of cAMP synthesis inhibition and on cAMP synthesis stimulation and inositolphosphates (IP) accumulation at higher agonist concentrations (non-preferred pathways). On the other hand, cholesterol depletion significantly increased E(max) of cAMP synthesis inhibition or stimulation without change in potency, and decreased E(max) of IP accumulation. Noteworthy, modifications of membrane cholesterol had no effect on membrane permeability, oxidative activity, protein content, or relative expression of G(s), G(i/o), and G(q/11) alpha subunits. These results demonstrate distinct changes of M(2) receptor signaling through both preferential and non-preferential G-proteins consequent to membrane cholesterol depletion that occur at the level of receptor/G-protein/effector protein interactions in the cell membrane. The significant decrease of IP accumulation by cholesterol depletion was also observed in cells expressing M(3) receptors and by both cholesterol depletion and enrichment in cells expressing M(1) receptors indicating relevance of reduced G(q/11) signaling for the pathogenesis of Alzheimer's disease.
- MeSH
- Acetylcholine analogs & derivatives MeSH
- Muscarinic Antagonists pharmacology MeSH
- beta-Cyclodextrins pharmacology MeSH
- Cell Membrane drug effects metabolism MeSH
- CHO Cells MeSH
- Cholesterol metabolism MeSH
- Cricetulus MeSH
- Carbachol analogs & derivatives metabolism pharmacology MeSH
- Cricetinae MeSH
- Humans MeSH
- N-Methylscopolamine metabolism pharmacology MeSH
- GTP-Binding Proteins metabolism MeSH
- Receptor, Muscarinic M2 metabolism MeSH
- Second Messenger Systems * drug effects MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Acetylcholine MeSH
- Muscarinic Antagonists MeSH
- beta-Cyclodextrins MeSH
- Cholesterol MeSH
- Carbachol MeSH
- methyl-beta-cyclodextrin MeSH Browser
- N-Methylscopolamine MeSH
- GTP-Binding Proteins MeSH
- Receptor, Muscarinic M2 MeSH
Mammal heart tissue has long been assumed to be the exclusive domain of the M(2) subtype of muscarinic receptor, but data supporting the presence of other subtypes also exist. We have tested the hypothesis that muscarinic receptors other than the M(2) subtype are present in the heart as minor populations. We used several approaches: a set of competition binding experiments with pirenzepine, AFDX-116, 4-DAMP, PD 102807, p-F-HHSiD, AQ-RA 741, DAU 5884, methoctramine and tripinamide, blockage of M(1) muscarinic receptors using MT7 toxin, subtype-specific immunoprecipitation experiments and determination of phospholipase C activity. We also attempted to block M(1)-M(4) receptors using co-treatment with MT7 and AQ-RA 741. Our results show that only the M(2) subtype is present in the atria. In the ventricles, however, we were able to determine that 20% (on average) of the muscarinic receptors were subtypes other than M(2), with the majority of these belonging to the M(1) subtype. We were also able to detect a marginal fraction (6 +/- 2%) of receptors that, based on other findings, belong mainly to the M(5) muscarinic receptors. Co-treatment with MT7 and AQ-RA 741 was not a suitable tool for blocking of M(1)-M(4) receptors and can not therefore be used as a method for M(5) muscarinic receptor detection in substitution to crude venom. These results provide further evidence of the expression of the M(1) muscarinic receptor subtype in the rat heart and also show that the heart contains at least one other, albeit minor, muscarinic receptor population, which most likely belongs to the M(5) muscarinic receptors but not to that of the M(3) receptors.
- MeSH
- Gene Expression MeSH
- Type C Phospholipases metabolism MeSH
- Binding, Competitive MeSH
- Rats MeSH
- Rats, Wistar MeSH
- Receptor, Muscarinic M1 drug effects metabolism MeSH
- Receptor, Muscarinic M2 drug effects metabolism MeSH
- Receptor, Muscarinic M3 drug effects metabolism MeSH
- Receptor, Muscarinic M5 drug effects metabolism MeSH
- Receptors, Muscarinic drug effects metabolism MeSH
- Heart Ventricles drug effects metabolism MeSH
- Heart Atria drug effects metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Type C Phospholipases MeSH
- Receptor, Muscarinic M1 MeSH
- Receptor, Muscarinic M2 MeSH
- Receptor, Muscarinic M3 MeSH
- Receptor, Muscarinic M5 MeSH
- Receptors, Muscarinic MeSH