Nejvíce citovaný článek - PubMed ID 12354197
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
- Klíčová slova
- Medicago sativa, alfalfa, genomics, metabolomics, proteomics, stress resistance genes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A triple mutant strain of Saccharomyces cerevisiae lacking its own Na+-ATPases and Na+/H+ antiporters (enal-4delta nha1delta nhx1delta) was used for the expression of the Oryza sativa NHX1 gene encoding a putative vacuolar Na+/H+ exchanger. Upon expression in yeast cells, the OsNhx 1p is not a transport system specific only for sodium cations but it has a broad substrate specificity for at least four alkali metal cations (Na+, Li+, K+ and Rb+) and is able to substitute for the endogenous yeast ScNhx1 antiporter. Its activity contributes to sequestration of alkali metal cations in intracellular vesicles.
- MeSH
- DNA rostlinná genetika MeSH
- geny hub MeSH
- kovy metabolismus farmakologie MeSH
- mutace MeSH
- Na(+)-H(+) antiport genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- rostlinné geny MeSH
- rýže (rod) genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- testy genetické komplementace MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- kovy MeSH
- Na(+)-H(+) antiport MeSH
- rekombinantní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH