Most cited article - PubMed ID 12641208
Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus
The aim of this review is to follow the history of studies on endemiv arboviruses and the diseases they cause which were detected in the Czech lands (Bohemia, Moravia and Silesia (i.e., the Czech Republic)). The viruses involve tick-borne encephalitis, West Nile and Usutu flaviviruses; the Sindbis alphavirus; Ťahyňa, Batai, Lednice and Sedlec bunyaviruses; the Uukuniemi phlebovirus; and the Tribeč orbivirus. Arboviruses temporarily imported from abroad to the Czech Republic have been omitted. This brief historical review includes a bibliography of all relevant papers.
- Keywords
- arthropods, birds, mammals, mosquitoes, ticks,
- MeSH
- Arbovirus Infections history MeSH
- Arboviruses physiology MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013-2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues' experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus.
- Keywords
- Asia, Babesia canis, Dermacentor reticulatus, Ecology, Epidemiology, Europe, Geographical distribution, Host associations, Omsk haemorrhagic fever virus, Spread,
- MeSH
- Arachnid Vectors classification microbiology parasitology physiology MeSH
- Babesia isolation & purification MeSH
- Babesiosis epidemiology transmission MeSH
- Demography MeSH
- Dermacentor classification microbiology parasitology physiology MeSH
- Ecology MeSH
- Host Specificity MeSH
- Tick Infestations epidemiology parasitology MeSH
- Classification MeSH
- Humans MeSH
- Tick-Borne Diseases epidemiology microbiology parasitology transmission MeSH
- Dog Diseases epidemiology microbiology parasitology transmission MeSH
- Hemorrhagic Fever, Omsk epidemiology transmission virology MeSH
- Dogs MeSH
- Life Cycle Stages MeSH
- Public Health MeSH
- Encephalitis Viruses, Tick-Borne isolation & purification MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Asia epidemiology MeSH
- Europe epidemiology MeSH
BACKGROUND: Abiotic conditions provide cues that drive tick questing activity. Defining these cues is critical in predicting biting risk, and in forecasting climate change impacts on tick populations. This is particularly important for Ixodes ricinus nymphs, the vector of numerous pathogens affecting humans. METHODS: A 6-year study of the questing activity of I. ricinus was conducted in Central Bohemia, Czech Republic, from 2001 to 2006. Tick numbers were determined by weekly flagging the vegetation in a defined 600 m(2) field site. After capture, ticks were released back to where they were found. Concurrent temperature data and relative humidity were collected in the microhabitat and at a nearby meteorological station. Data were analysed by regression methods. RESULTS: During 208 monitoring visits, a total of 21,623 ticks were recorded. Larvae, nymphs, and adults showed typical bimodal questing activity curves with major spring peaks and minor late summer or autumn peaks (mid-summer for males). Questing activity of nymphs and adults began with ~12 h of daylight and ceased at ~9 h daylight, at limiting temperatures close to freezing (in early spring and late autumn); questing occurred during ~70 % calendar year without cessation in summer. The co-occurrence of larvae and nymphs varied annually, ranging from 31 to 80 % of monitoring visits, and depended on the questing activity of larvae. Near-ground temperature, day length, and relative air humidity were all significant predictors of nymphal activity. For 70 % of records, near-ground temperatures measured in the microhabitat were 4-5 °C lower than those recorded by the nearby meteorological observatory, although they were strongly dependent. Inter-annual differences in seasonal numbers of nymphs reflected extreme weather events. CONCLUSIONS: Weather predictions (particularly for temperature) combined with daylight length, are good predictors of the initiation and cessation of I. ricinus nymph questing activity, and hence of the risk period to humans, in Central Europe. Co-occurrence data for larvae and nymphs support the notion of intrastadial rather than interstadial co-feeding pathogen transmission. Annual questing tick numbers recover quickly from the impact of extreme weather events.
- MeSH
- Time Factors MeSH
- Ixodes physiology MeSH
- Larva physiology MeSH
- Nymph physiology MeSH
- Population Dynamics MeSH
- Seasons MeSH
- Temperature MeSH
- Humidity MeSH
- Environment * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH