Nejvíce citovaný článek - PubMed ID 12807866
In this paper, a new approach for the periodical testing and the functionality evaluation of a fetal heart rate monitor device based on ultrasound principle is proposed. The design and realization of the device are presented, together with the description of its features and functioning tests. In the designed device, a relay element, driven by an electric signal that allows switching at two specific frequencies, is used to simulate the fetus and the mother's heartbeat. The simulator was designed to be compliant with the standard requirements for accurate assessment and measurement of medical devices. The accuracy of the simulated signals was evaluated, and it resulted to be stable and reliable. The generated frequencies show an error of about 0.5% with respect to the nominal one while the accuracy of the test equipment was within ±3% of the test signal set frequency. This value complies with the technical standard for the accuracy of fetal heart rate monitor devices. Moreover, the performed tests and measurements show the correct functionality of the developed simulator. The proposed equipment and testing respect the technical requirements for medical devices. The features of the proposed device make it simple and quick in testing a fetal heart rate monitor, thus providing an efficient way to evaluate and test the correlation capabilities of commercial apparatuses.
- Klíčová slova
- cardiotocograph, doppler effect, fetal heart rate, fetal heart rate monitor device, heart movement simulator, tests of medical device,
- MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- plod * MeSH
- srdeční frekvence plodu * MeSH
- srdeční frekvence MeSH
- těhotenství MeSH
- ultrasonografie MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Granulosa cells (GCs) have many functions in the endocrine system. Most notably, they produce progesterone following ovulation. However, it has recently been proven that GCs can change their properties when subjected to long‑term culture. In the present study, GCs were collected from hyper‑stimulated ovarian follicles during in vitro fertilization procedures. They were grown in vitro, in a long‑term manner. RNA was collected following 1, 7, 15 and 30 days of culture. Expression microarrays were used for analysis, which allowed to identify groups of genes characteristic for particular cellular processes. In addition, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to validate the obtained results. Two ontological groups characteristic for processes associated with the development and morphogenesis of the heart were identified during the analyses: 'Heart development' and 'heart morphogenesis'. The results of the microarrays revealed that the highest change in expression was demonstrated by the lysyl Oxidase, oxytocin receptor, nexilin F‑actin binding protein, and cysteine‑rich protein 3 genes. The lowest change was exhibited by odd‑skipped related transcription factor 1, plakophilin 2, transcription growth factor‑β receptor 1, and kinesin family member 3A. The direction of changes was confirmed by RT‑qPCR results. In the present study, it was suggested that GCs may have the potential to differentiate towards other cell types under long‑term in vitro culture conditions. Thus, genes belonging to the presented ontological groups can be considered as novel markers of proliferation and differentiation of GCs towards the heart muscle cells.
- MeSH
- buněčná diferenciace genetika MeSH
- buněčné kultury * MeSH
- buněčný rodokmen genetika MeSH
- folikulární buňky cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- lysyloxidasa genetika MeSH
- morfogeneze genetika MeSH
- ovariální folikul cytologie metabolismus MeSH
- ovulace genetika MeSH
- progesteron genetika MeSH
- receptory oxytocinu genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lysyloxidasa MeSH
- progesteron MeSH
- receptory oxytocinu MeSH
The heart is able to metabolize any substrate, depending on its availability, to satisfy its energy requirements. Under normal physiological conditions, about 95% of ATP is produced by oxidative phosphorylation and the rest by glycolysis. Cardiac metabolism undergoes reprograming in response to a variety of physiological and pathophysiological conditions. Hypoxia-inducible factor 1 (HIF-1) mediates the metabolic adaptation to hypoxia and ischemia, including the transition from oxidative to glycolytic metabolism. During embryonic development, HIF-1 protects the embryo from intrauterine hypoxia, its deletion as well as its forced expression are embryonically lethal. A decrease in HIF-1 activity is crucial during perinatal remodeling when the heart switches from anaerobic to aerobic metabolism. In the adult heart, HIF-1 protects against hypoxia, although its deletion in cardiomyocytes affects heart function even under normoxic conditions. Diabetes impairs HIF-1 activation and thus, compromises HIF-1 mediated responses under oxygen-limited conditions. Compromised HIF-1 signaling may contribute to the teratogenicity of maternal diabetes and diabetic cardiomyopathy in adults. In this review, we discuss the function of HIF-1 in the heart throughout development into adulthood, as well as the deregulation of HIF-1 signaling in diabetes and its effects on the embryonic and adult heart.
- Klíčová slova
- cardiomyopathy, embryopathy, fetal programing, heart development, hypoxia-inducible factor 1,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
- Klíčová slova
- Pitx2, atrial fibrillation, congenital heart diseases, left/right signaling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH