Most cited article - PubMed ID 12893307
Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
- Keywords
- A. multifolium, A. scholaris, E. coli, L. indica, S. aureus, antimicrobial activity, nanoparticles, plant extracts, tropical plant,
- Publication type
- Journal Article MeSH
BACKGROUND: Thiol-rich peptides and proteins possess a large number of biological activities and may serve as markers for numerous health problems including cancer. Metallothionein (MT), a small molecular mass protein rich in cysteine, may be considered as one of the promising tumour markers. The aim of this paper was to employ chronopotentiometric stripping analysis (CPSA) for highly sensitive detection of MT. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used adsorptive transfer stripping technique coupled with CPSA for detection of cysteine, glutathione oxidized and reduced, phytochelatin, bovine serum albumin, and metallothionein. Under the optimal conditions, we were able to estimate detection limits down to tens of fg per ml. Further, this method was applied to detect metallothioneins in blood serum obtained from patients with breast cancer and in neuroblastoma cells resistant and sensitive to cisplatin in order to show the possible role of metallothioneins in carcinogenesis. It was found that MT level in blood serum was almost twice higher as compared to the level determined in healthy individuals. CONCLUSIONS/SIGNIFICANCE: This paper brings unique results on the application of ultra-sensitive electroanalytical method for metallothionein detection. The detection limit and other analytical parameters are the best among the parameters of other techniques. In spite of the fact that the paper is mainly focused on metallothionein, it is worth mentioning that successful detection of other biologically important molecules is possible by this method. Coupling of this method with simple isolation methods such as antibody-modified paramagnetic particles may be implemented to lab-on-chip instrument.
- MeSH
- Cell Line MeSH
- Electrochemistry methods MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Rabbits MeSH
- Humans MeSH
- Metallothionein blood urine MeSH
- Potentiometry MeSH
- Reproducibility of Results MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Metallothionein MeSH
Among wide spectrum of biomolecules induced by various stress factors low molecular mass protein called metallothionein (MT) is suitable for assessment of the heavy metal environmental pollution. The aim of this work was to determine the metallothionein and total thiols content in larvae of freshwater midges (Chironomus riparius) sampled from laboratory exposure to cadmium(II) ions and from field studies using differential pulse voltammetry Brdicka reaction. Unique electrochemical instrument, stationary electrochemical analyser Autolab coupled with autosampler, was utilized for the analysis of the samples. The detection limit for MT was evaluated as 5 nM. The larvae exposed to two doses (50 ng/g or 50 μg/g) of cadmium(II) ions for fifteen days under laboratory controlled conditions were at the end of the exposure killed, homogenized and analysed. MT content in control samples was 1.2 μM, in larvae exposed to 50 ng Cd/g it was 2.0 μM and in larvae exposed to 50 μg Cd/g 2.9 μM. Moreover at field study chironomid larvae as well as sediment samples have been collected from eight field sites with different levels of pollution by heavy. The metals content (chromium, nickel, copper, zinc, arsenic, molybdenum, cadmium, tin and lead) in the sediment and or MT content in the chironomid larvae were determined by inductively coupled plasma mass spectrometry or Brdicka reaction, respectively.
- Keywords
- Brdicka Reaction, Catalytic Hydrogen Evolution, Differential Pulse Voltammetry, Environmental Marker, Heavy Metal Contamination., Metallothionein, Thiols,
- Publication type
- Journal Article MeSH
In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum.
- Keywords
- Adsorptive Transfer Stripping Technique, Animal Tissue, Brdicka Reaction, Cell, Differential Pulse Voltammetry, Human blood serum, Metallothionein, Protein, Tumour Marker,
- Publication type
- Journal Article MeSH
Metallothioneins belong to a group of intracellular, high molecular andcysteine-rich proteins whose content in an organism increase with increasing concentrationof a heavy metal. The aim of this work was to apply the electrochemical analysis for theanalysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge.Here we utilized adsorptive transfer technique coupled with differential pulse voltammetryBrdicka reaction to determine metallothionein in different biological samples. By meansthis very sensitive technique it was possible to analyze metallothionein in concentrationsbelow 1 μmol.l⁻1 with the standard deviation of 4-5%. We found out that the average MTlevel in the non-treated earthworms oscillated between 19 and 48 μmol.l-1. When weanalysed samples of earthworms treated by cadmium, we observed that the MT contentincreased with the exposition length and increase dose of cadmium ions. Finally, weattempted to study and compare the toxicity of the raw sludge and its leach by using ofearthworms. The raw brewery sludge caused the death of the earthworms quickly.Earthworms held in the presence of leach from brewery sludge increased their weight of147 % of their original weight because they ingested the nutrients from the sludge. Themetallothionein level changes markedly with increasing time of exposition and applieddose of toxic compound. It clearly follows from the obtained results that the MT synthesisis insufficient in the first hours of the exposition and increases after more than 24 h.
- Keywords
- Biochemical marker, Cadmium, Earthworm, Electrochemistry, Heavy metals, Metallothionein, Voltammetry,
- Publication type
- Journal Article MeSH
Metallothioneins play a key role in maintaining homeostasis of essential metalsand in protecting of cells against metal toxicity as well as oxidative damaging. Exceptinghumans, blood levels of metallothionein have not yet been reported from any animalspecies. Blood plasma samples of 9 animal species were analysed by the adsorptive transferstripping technique to obtain species specific voltammograms. Quite distinct records wereobtained from the Takin (Budorcas taxicolor), while other interesting records were observedin samples from the European Bison (Bison bonasus bonasus) and the Red-eared Slider(Trachemys scripta elegans). To quantify metallothionein the catalytic peak Cat2 was used,well developed in the Domestic Fowl (Gallus gallus f. domestica) and showing a very lowsignal in the Red Deer (Cervus elaphus). The highest levels of metallothionein reachingover 20 μM were found in the Domestic Fowl. High levels of MT were also found in theBearded Dragon (Pogona vitticeps) and the Grey Wolf (Canis lupus lupus). The lowestvalues of about 1-3 μM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates.
- Keywords
- Bactrian Camel, Bearded Dragon, Brdicka reaction, Catalytic signal, Domestic Fowl, Electrochemical detection, European Bison, Grey Wolf, Heavy metals, Red Deer, Red-eared Slider, Reindeer, Takin,
- Publication type
- Journal Article MeSH